Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì M là trung điểm BC, AN
\(\rightarrow ABNC\) là hình bình hành
\(\rightarrow CN//AB,CN=AB\rightarrow AN=AD\)
Mà \(\widehat{DAB}=\widehat{EAC}=90^O\rightarrow\widehat{DAE}+\widehat{DAE}=180^O\)
\(\rightarrow\widehat{DAE}=\widehat{ACN}\left(+\widehat{BAC}=180^O\right)\)
\(\rightarrow\Delta DEA=\Delta NCA\left(c-g-c\right)\rightarrow ED=AN\)
Gọi \(AN\cap DE=F\) do \(\widehat{FEA}+\widehat{NAC}=90^O\rightarrow\widehat{FAE}+\widehat{FEA}=90^O\)
\(\rightarrow AN\cap DE\)
b.Ta có :
\(\left\{{}\begin{matrix}AD=AB\\\widehat{DAC}=\widehat{BAE}\left(=90^O+\widehat{BAC}\right)\\AE=AC\end{matrix}\right.\)
\(\rightarrow\Delta ADC=\Delta ABE\left(c-g-c\right)\rightarrow BE=CD\)
Gọi \(CD\cap BE=G,\widehat{ADC}=\widehat{ABE}\rightarrow AGBD\) nội tiếp
\(\rightarrow\widehat{DAB}=\widehat{DGB}=90^O\rightarrow BE\perp CD\)
c.Gọi \(AH\cap DE=I\)
Vì : \(\Delta ADE=\Delta CNA,I,M\) là trung điểm \(DE,AN\rightarrow\Delta IAE=\Delta MAC\)
\(\rightarrow\widehat{IAE}+\widehat{HAC}=\widehat{ACH}+\widehat{HAC}=90^O\rightarrow\widehat{IAH}=180^O\)\(\rightarrow I,A,H\) thẳng hàng
Hay AH đi qua trung điểm của DE
Câu 2:
Kẻ \(DK\perp BH.\)
Mà \(BH\perp AC\left(gt\right)\)
=> \(DK\) // \(AC\) (từ vuông góc đến song song).
Hay \(DK\) // \(HC.\)
=> \(\widehat{KDB}=\widehat{HCD}\) (vì 2 góc đồng vị).
+ Vì \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
=> \(\widehat{FBD}=\widehat{HCD}.\)
Mà \(\widehat{KDB}=\widehat{HCD}\left(cmt\right)\)
=> \(\widehat{FBD}=\widehat{KDB}.\)
Xét 2 \(\Delta\) vuông \(BFD\) và \(DKB\) có:
\(\widehat{BFD}=\widehat{DKB}=90^0\)
Cạnh BD chung
\(\widehat{FBD}=\widehat{KDB}\left(cmt\right)\)
=> \(\Delta BFD=\Delta DKB\) (cạnh huyền - góc nhọn).
=> \(DF=BK\) (2 cạnh tương ứng) (1).
Nối D với H.
+ Vì \(DK\) // \(AC\left(cmt\right)\)
=> \(DK\) // \(EH.\)
=> \(\widehat{KDH}=\widehat{EHD}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) vuông \(DEH\) và \(HKD\) có:
\(\widehat{DEH}=\widehat{HKD}=90^0\)
Cạnh DH chung
\(\widehat{EHD}=\widehat{KDH}\left(cmt\right)\)
=> \(\Delta DEH=\Delta HKD\) (cạnh huyền - góc nhọn).
=> \(DE=HK\) (2 cạnh tương ứng) (2).
Từ (1) và (2) => \(DF+DE=BK+HK.\)
Mà \(BK+HK=BH\)
=> \(DF+DE=BH\left(đpcm\right).\)
Chúc bạn học tốt!
1) Cho \(\Delta\)ABC có AB = AC . Lấy điểm D trên cạnh AB , Điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD . Chứng minh rằng \(\Delta\) BOD = \(\Delta\)COE
2) Cho \(\Delta\)ABC vuông tại A. Tia phân giác của góc B cắt AC ở D . Kẻ DE vuông góc với BC . C/m rằng AB = BE
A B C E D M N K
Ta có: \(\Delta BMN=\Delta CMA\left(c.g.c\right)\Rightarrow AC=NB;goc:BNM=goc:CAM\)
\(matkhac:gocEAD+gocCAB=360-90-90=180;ABN+BAN+BNA=180\Rightarrow CAM+BAN+ABN=180\Leftrightarrow CAB+ABN=180\Leftrightarrow EAD=ABN\Rightarrow\Delta ABN=\Delta DAE\left(c.g.c\right)\Rightarrow AN=DE\)
cac cau khac có trong SBT; nang cao pt; nếu cần mai giúp