Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a) xét tam giác OAM và tam giác OBM có:
OB=OA(gt)
góc BOM= góc MOA(Ot là tia phân giác của góc xOy)
OM:cạnh chung
⇒tam giác OAM= tam giác OBM(c.g.c)
b)vì tam giác OAM= tam giác OBM(câu a)
⇒AM=BM(2 cạnh tương ứng)
⇒góc OMB= góc OMA(2 góc tương ứng)
Mà hóc OMB+góc OMA=180o(kề bù)
⇒góc OMB=góc OMA=180o:2=90o
⇒OM vuông góc với AB
c)vì MA=MB(câu b)
Mà OM vuông góc với AB(câu b)
⇒OM là đường trung trực của AB
d)xét tam giác NBM và tam giác NAM có
AM=BM(câu b)
góc BMN= góc AMN(=90o)
MN:cạnh chung
⇒tam giác NBM= tam giác NAM(c.g.c)
⇒NA=NB(2 cạnh tướng ứng)
Kẻ ME (E thuộc AC) sao cho NE = NA
Ta có: AE = NA + NE = 2NA . (1)
và AC =4NA = AE+ EC = 2NA + EC
=> EC = 2NA (2)
Từ (1) và (2) => AE= EC . Mà MB = MC => MN // AB => DAN^ = MEN^ (sole trong)
Tam giác ADN và EMN: AND^ = ENM^ (đđ) ; NA = NE ; DAN^ = MEN^
=> tam giác ADN = EMN (g.c.g)
=> ND= NM (2 cạnh tương ứng)
Mà M,N,D thẳng hàng và N nằm giữa M và D (do MN giao BA = D)
=> N là trung điểm của MD (đpcm)
Ta có:\(BK//DE\)
\(\Rightarrow\)\(\frac{DK}{KI}=\frac{BE}{BI}=\frac{BE}{CD}\left(BI=CD\right)\)
Mà: \(DE//BC\)
\(\Rightarrow\)\(\frac{AB}{BE}=\frac{AC}{CD}\Rightarrow\frac{BE}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{DK}{KI}=\frac{AB}{AC}\)