Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E H K O I
a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)
=> ADME là hình chữ nhật
=> AM= DE
b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)
Do ADME là HCN => DA = ME
=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)
=> DI = EK
Xét tứ giác DIEK có DI = EK (cmt)
DI// EK (vì CEMD là HCN)
=> DKEI là hình bình hành
Do O là trung điểm của DE => KI đi qua O
=> DE cắt IK tại O và OD = OE; OK = OI (1)
Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường
c) don't know, tự làm
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
=>AD=ME
b: Xét tứ giác FDGE có
GE//FD
GE=FD
=>FDGE là hình bình hành
=>FG cắt DE tại trung điểm của mỗi đường(1)
ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AM,DE,FG đồng quy
c: góc AHM=góc AEM=góc ADM=90 độ
=>A,D,H,M,E cùng thuộc đường tròn đường kính AM
=>A,D,H,M,E cùng thuộc đường tròn đường kính DE
=>góc DHE=90 độ
a: Xét tứ giác ADEF có
\(\widehat{ADE}=\widehat{AFE}=\widehat{FAD}=90^0\)
Do đó: ADEF là hình chữ nhật
Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.
Vì D là trung điểm của BC nên BD = CD.
Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.
Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.
Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).
Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
Do đó, ta có AE = AF và DE = DF.
Vì M là trung điểm của HC nên ta có HM = MC.
Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.
Ta cần chứng minh FM vuông góc với AM.
Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.
Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).
Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).
Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).
Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.
Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.
Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.
Do đó, ta có góc FAM = 90°.
Do đó, FM vuông góc với AM.
Câu b đề sai rồi bạn
G đối xứng với E qua D đúng không bạn?
à đúng rồi bạn G đối xứng với E qua D mà do mình vội nên ghi sai
a: Xét tứ giác ADGE có
góc ADG=góc AEG=góc EAD=90 độ
nên ADGE là hình chữ nhật
=>DE=AG
c: Xét tứ giác ADEM có
AD//EM
AD=EM
Do đó: ADEM là hình bình hành
=>DE//AM