K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

b: \(\widehat{B}=90^0-40^0=50^0\)

\(\widehat{BDA}=\dfrac{180^0-50^0}{2}=65^0\)

\(\widehat{DAC}=90^0-65^0=25^0\)

29 tháng 11 2019

Bài 4:

29 tháng 11 2019

Bài 6:

b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)

=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).

Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)

=> \(\widehat{ADB}+\widehat{HDB}=120^0\)

\(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)

=> \(2.\widehat{ADB}=120^0\)

=> \(\widehat{ADB}=120^0:2\)

=> \(\widehat{ADB}=60^0.\)

=> \(\widehat{ADB}=\widehat{HBD}=60^0\)

Xét \(\Delta ABD\) có:

(định lí tổng ba góc trong một tam giác).

=> \(90^0+\widehat{ABD}+60^0=180^0\)

=> \(150^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-150^0\)

=> \(\widehat{ABD}=30^0\)

Vậy \(\widehat{ABD}=30^0.\)

Chúc bạn học tốt!

Bài 5:

a: Xét ΔABK vuông tại K và ΔIBK vuông tại K có

BK chung

góc ABK=góc IBK

Do đó: ΔABK=ΔIBK

Suy ra: BA=BI

hay ΔBAI cân tại B

b: Xét ΔBAD và ΔBID có

BA=BI

goc ABD=goc IBD

BD chung

DO đó ΔBAD=ΔBID

Suy ra: góc BID=90 độ

=>DI vuông góc với BC

9 tháng 2 2016

Bai 4:(tu ke hinh nha!)

*Truong hop BC la canh huyen;

tam giac ABC vuong tai A .Ap dung dinh ly pytago ta co:

BC2=AB2+AC2

102=62+AC2

100=36+AC2

AC2=100-36

AC2=64

AC=8

*Truong hop AC la canh huyen

AC2=AB2+BC2

AC2=62+102

AC2=36+100

AC2=136

AC=CAN CUA 136

Vay AC bang  :can 136:8

 

 


 



 

6 tháng 4 2016

Bài 1 ( Hình tự kẻ )

a) Xét tam giác ABD và tam giác HBD, ta có:

     góc BAD = góc BHD = 90 độ

     BD là cạnh chung

     góc ABD = góc HBD ( BD là đường phân giác của góc ABH )

=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

b) Xét tam giác ADE và tam giác HDC, ta có:

     góc EAD = góc CHD = 90 độ

     DA = DH ( vì tam giác ABD = tam giác HBD )

     góc ADE = góc HDC ( đối đỉnh )

=> tam giác ADE = tam giác HDC ( cạnh góc vuông - góc nhọn )

=> góc AED = góc HCD ( 2 góc tương ứng )

** Mk chỉ có thể giúp dc đến đó thôi