K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

A B C H K E N M a, ^BAC + ^BAK = 180 (kề bù)

^BAC = 135 (gt)

=> ^BAK = 45

xét ΔAKB có : ^AKB = 90

=> ΔAKB vuông cân  (dấu hiệu)

b, ^KBC = 90 - ^KCB 

^CAH = 90 - ^ACH 

=> ^CAH = ^ABK 

^CAH = ^KAE (đối đỉnh)

=> ^ABK = ^KAE 

xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90

AK = KB do ΔAKB cân tại K (câu a)

=> ΔAKE = ΔBKC (cgv-gnk)

=> AE = BC (định nghĩa)

c, kẻ MK

xét ΔMNE và ΔMNK có : MN chung

^MNE = ^MNK = 90 

NE = NK do N là trung điểm của EK (Gt)

=> ΔMNE = ΔMNK (2cgv)

=> MN = MK (định nghĩa)                                            (1)

      ^EMN = ^KMN (định nghĩa)                                     (2)

MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)

=> ^EMN = MCK (đồng vị)

     ^NMK = ^MKC (so le trong)

và (2)

=> ^MCK = ^MKC 

=> ΔMKC cân tại M (dấu hiệu)

=> MK = MC (định nghĩa)   và (1)

=> ME = MC mà M nằm giữa C và E

=> M là trung điểm của EC

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm a) Chứng tỏ tam giác ABC vuông b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC c) BH cắt AG tại G là trọng tâm tam giác ABC Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE a) Chứng minh CD = BE và CD vuông góc với BE b) Kẻ đường thẳng đi qua A vuông với BC...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm 

a) Chứng tỏ tam giác ABC vuông 

b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC 

c) BH cắt AG tại G là trọng tâm tam giác ABC 

Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE 

a) Chứng minh CD = BE và CD vuông góc với BE 

b) Kẻ đường thẳng đi qua A vuông với BC tại H . Chứng minh AH đi qua đường thẳng DE . Lấy điểm K nằm trong tam giác ABD sao cho  góc ABH = 30 độ , AB = BK . Chứng minh chúng bằng nhau

Bài 3 : Cho tam giác ABC vuông ở C có góc A = 60 độ . Tia p/g của góc BAC cắt BC ở E , kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với AE ( D thuộc AE)

b) Chứng minh tam giác ACE = tam giác AKE và AE vuôngg góc với CK 

c) chứng minh EB > AC , 3 đường thẳng AC , BD ,, KE cùng đi qua 1 điểm 

 

2
28 tháng 6 2020

a) xét \(\Delta ABC\)

\(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=36+64=100\)

VÌ \(100=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

VẬY \(\Delta ABC\) VUÔNG TẠI A

28 tháng 6 2020

trong tam giác ABC ta có :

     AB2=62=36

     AC2=82=64

    BC2=102=100

ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )

=> tam giác ABC vuông tại A 

CHÚC BẠN HỌC TỐT !!!

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại Da) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng ABb) tam giác DMC là tam giác jk ? vì sao ?2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM...
Đọc tiếp

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại D

a) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng AB

b) tam giác DMC là tam giác jk ? vì sao ?

2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM vuông góc với BC ( M thuộc BC ) gọi N là gia điểm của AB và MH chúng minh

a) tam giác ABH bằng tam giác MBH

b) BH là đương trung trực cyar đoạn thẳng AM

c) AM//CN

d) BH vuông góc với CN

3) cho tam giác ABC vuông tại C có góc A = 60 và đường phân giác cua góc BAC cắt BC tại E kẻ EK vuông góc với AB tại K ( K thuộc AB ) kẻ BD vuông góc với AE tại D ( D thuộc AE ) chứng minh

a) tam giác ACE bằng tam giác AKE

b)AE là đường trung trực của đoạn thẳng CK

c) KA=KB

4) cho tam giác ABC có góc A = 90 vẽ phân giác BD và CE ( D thuộc ac , E thuộc AB ) chúng cắt nhau tại O

a) tính số đo góc BOC

b) trên BC lấy M,N sao cho BM=BA, CN=CA chứng minh EN//DM

c) gọi I là giao điểm của BD VÀ AN . chứng minh tam giác AIM vuông cân

5) cho tam giác ABC ( AB=AC ) gọi K là trung điểm của BC

a) chứng minh tam giác AKB tam giác AKC và AK vuông góc với BC

b) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E chúng minh EC //AK

c) tam giác BCE là tam giác jk ? tính góc BEC

6) cho tam giác ABC biết AB < BC trên tia BA lấy điểm D sao cho BC= BD nối C với D . phân giác góc B cắt cạn AC , DC lần lượt ở E và I 

a) chứng minh tam giác BED = tam giác BEC và IC=ID

b) từ A vẽ đường vuông góc AH với DC ( H thuộc DC ) . chứng minh AH//BL

       VẼ HÌNH VÀ GIẢI CHI TIẾT CÁC BAI HỘ MÌNH NHA

 

5
14 tháng 2 2018

3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)

a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))

Cạnh huyền AE chung

=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)

b/ Ta có \(\Delta ACE\)\(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)

Gọi M là giao điểm của AE và CK.

\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)

\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))

Cạnh AM chung

=> \(\Delta ACM\)\(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)

\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)

Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)

=> 2\(\widehat{AMC}\)= 180o

=> \(\widehat{AMC}\)= 90o

=> AM \(\perp\)CK (2)

Từ (1) và (2) => AE là đường trung trực của CK (đpcm)

14 tháng 2 2018

tsk nha

11 tháng 2 2021

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

19 tháng 4 2015

 1,a, cm: tam giác BEC và tg BDC(c.g.c0

b, cm : tg ABE= tg ACD(c,g.c)

c, cm: BK=KC ( cm: tg BKD= tg CED)

25 tháng 3 2017

CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM

a, Tính BC

b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC

c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC