K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

a/xét tg AMB và tg AMC:

  góc AMB=góc AMC(=90 độ)

 BM=CM(giả thiết)

AM:chung

\(\Rightarrow\)tg AMB=tg AMC(C-G-C)

b/Theo phần a ta có:tg AMB=tg AMC

                             \(\rightarrow\)góc B=góc C(2 góc tương ứng)

c/xét tg BHM và tg CKM:

góc B=góc C(theo phần b)

góc BHM=góc MKC=90 độ

BM=MC(gt)

\(\Rightarrow\)tg BHM= tg CKM(cạnh huyền-góc nhọn)

\(\rightarrow\)MH=MK(2 cạnh tương ứng)

1 tháng 5 2016

a) xét tam giác ABC vuông tại A ta có

BC2=AB2+AC2 (pitago)

152=92+AC2

AC2=152-92

AC  =12

b) xét tam giac MHC và tam giac  MKB ta có

MC=MB ( AM là đường trung tuyến )

MH=MK(gt)

góc CMH= góc BMK ( 2 góc đối đỉnh)

-> tam giác MHC= tam giac MKB (c-g-c)

_> góc MHC= góc MKB (2 góc tương ứng)

mà 2 góc nằm ở vị trí sole trong 

nên BK//AC

b) ta có góc MHC= góc MKB (cmt)

          góc MHC =90 (MH vuông góc AC)

-> góc MKB =90

Xét tam giác ABH vuông tại A và tam giác BKM vuông tại K ta có

BH=BH (cạnh chung)

góc AHB= góc HBK ( 2 góc so le trong và BK//AC)

-> tam giac ABH = tam giac KHM (ch-gn)

-> AH=BK (2 cạnh tương ứng)

mà BK = HC ( tam giác HMC= tam giác KMB)

nên AH=HC

-> H là trung điểm AC

Xét tam giac ABC ta có

BH là đường trung tuyến ( H là trung điểm AC)

AM là dường trung tuyến (gt)

BH cắt AM tai G (gt)

-> G là trọng tâm tam giác ABC

a, tứ giác AKHM có

∠AHM= ∠AKM =∠HAK ( =90 )

⇒ tứ giác AKHM là hình chữ nhật 

b)Ta có tam giác ABC có M trug điểm BC

NH vuông góc vs AB=> MH// AC và MH =1/2 AC

Cmtt K là trung điểm AC

=> HK là đg tb của tam giác ABC=> HK//B M   Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành

c)Ta có EF là đường tb tam giác MHK

=> EF//HK 

EF// HK và EF=1/2 HK

GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM

EF= HO= KO

Mà HO= HI+IO

=> KO=JO+KJ

Mà IO= JO=> HI= KJ

d) Dễ thấy EF =1/3 AB= 4 căn 3 /3

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

20 tháng 6 2020

A B C H K M G

Bài làm:

a) Ta có: \(\hept{\begin{cases}AB^2+AC^2=9^2+12^2=225\left(cm\right)\\BC^2=15^2=225\left(cm\right)\end{cases}}\)

\(\Rightarrow AB^2+AC^2=BC^2\)

Áp dụng định lý Pytago đảo => Tam giác ABC vuông tại A

=> đpcm

b) Xét 2 tam giác: \(\Delta MHC\)và \(\Delta MKB\)có:

\(\hept{\begin{cases}MK=MH\left(gt\right)\\\widehat{HMC}=\widehat{KMB}\\MB=MC\left(gt\right)\end{cases}}\)(đối đỉnh)

=> \(\Delta MHC=\Delta MKB\left(c.g.c\right)\)

=> đpcm

c) Áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông

=> \(AM=\frac{1}{2}BC=MC\)

=> Tam giác AMC cân tại M, mà MH là đường cao xuất phát từ đỉnh trong tam giác cân AMC

=> MH đồng thời là đường trung tuyến của tam giác AMC

=> H là trung điểm AC

=> BH là đường trung tuyến của tam giác ABC

Mà AG,BH là 2 đường trung tuyến của tam giác ABC cắt nhau tại G

=> G là trọng tâm tam giác ABC

=> đpcm

Học tốt!!!!

20 tháng 6 2020

Ở đoạn xét 2 tam giác mình viết bị lỗi, bạn viết thêm cho mình MB = MC (giả thiết) nhé!