Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta MBE\)và \(\Delta MAE\)ta có :
\(ME\): cạnh chung (1)
Góc \(MEB=MEA=90\)độ (2)
\(MB=MA\left(GT\right)\) (3)
Từ (1) ; (2) và (3) => \(\Delta MBE=\Delta MAE\)(cạnh-góc-cạnh)
\(\Rightarrow MB=MA\)( cặp cạnh tương ứng)
b) Áp dụng định lí Py-ta-go cho tam giác vuông BAC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow8^2+6^2=BC^2\)
\(\Rightarrow64+36=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow\)BC= Căn 100
\(\Rightarrow BC=10\)
Vậy BC = 10 cm .
\(a)\)
Vì \(AM\)là đường trung tuyến
\(\rightarrow BM=CM\)
Xét \(\Delta AMB\)và \(\Delta DMC\)ta có:
\(\hept{\begin{cases}BM=CM\left(cmt\right)\\MD=MA\left(GT\right)\\\widehat{BMA}=\widehat{DMC}\end{cases}}\)
\(\rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(b)\)
Vì \(\Delta AMB=\Delta DMC\left(cmt\right)\)
\(\rightarrow\hept{\begin{cases}\widehat{ABM}=\widehat{MCD}\\AB=CD\end{cases}}\)
Mà hai góc này ở vị trí so le trong
\(\rightarrow AB//CD\)
Mà \(AB\perp AC\)( vì \(\Delta ABC\)vuông tại \(A\))
\(\rightarrow CD\perp AC\)
Xét \(\Delta ABC\)và \(DCM\)ta có:
\(\hept{\begin{cases}AB=CD\left(cmt\right)\left(cmt\right)\\ACchung\\\widehat{BAC}=\widehat{DCA}=90^o\end{cases}}\)
\(\rightarrow\Delta ABC=\Delta DMC\left(c.g.c\right)\)
\(c)\)
Ta có: \(AB=DC=6cm\)
Xét \(\Delta DCA\)vuông tại \(C\)ta có:
\(DC^2+AC^2=AD^2\)
\(\rightarrow AD^2=6^2+8^2\)
\(\rightarrow AD^2=10^2\)
\(\rightarrow AD=10cm\)
Mà \(MD=MA\)
\(\rightarrow M\)là trung điểm của \(AD\)
\(\rightarrow AM=\frac{1}{2}AD=\frac{1}{2}.10=5cm\)
\(d)\)
Giả sử: \(AM< \frac{AB+AC}{2}\)
Ta có: \(\frac{AB+AC}{2}=\frac{6+8}{2}=\frac{14}{2}=7cm\)
Mà \(AM=5cm\)
\(\rightarrow5cm< 7cm\)
\(\rightarrow AM< \frac{AB+AC}{2}\)
M C A B D
Ngày mai mình nộp bài rồi, mong các bạn chỉ bài giúp mình . mình không hiểu gì về 2 bài toán này cả TT_TT
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.
Giải
Xét tam giác AMB và tam giác AMC
AM chung
AB=AC(gt)
MB=MC(AM là trung tuyến của tam giác ABC)
Vậy tam giác AMB= tam giác AMC(c.c.c)
Suy ra :góc BAM = góc CAM
Suy ra AM là hân giác của gócA
Ý b
Vì tam giác AMB= tam giác AMC(cmt)
suy ra
góc AMB= góc AMC
có góc AMB+AMC=180 độ
mà góc AMB=góc AMC=90 độ
Suy ra AM vuông góc với BC
tam giác AMB vuông tại B
Ý c
Vì MB=MC=3cm
Áp dụng định lý PI-TA-GO và tam giác vuông ta có
AB^2=MB^2+MA^2
25=9+MA^2
MA^2=16
MA=4cm