K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

27 tháng 7 2017

Ta có AB < AC, mà AC = BG nên AB < BG. Do đó ^AGB < ^GAB, mà ^AGB = ^HAC (câu a) nên ^HAC < ^GAB (1).

Tam giác AGH cân tại A, đường trung tuyến AM => ^GAM = ^HAM (2).

Từ (1) và (2) => ^BAM = ^GAM - ^GAB < ^HAM - ^HAC = ^MAC.

27 tháng 7 2017

c) Từ câu a => tam giác AGH cân tại A, đường trung tuyến AM đồng thời là đường cao nên AM vuông góc GH.

Hai đường cao BE, CF cắt nhau tại O nên O là trực tâm của tam giác ABC. Do đó AO vuông góc BC.

AM cắt BC tại K, ta thấy ^OAM = 90 độ - ^AKB; ^BNG = 90 độ - ^MKN; hai góc AKB và MIN đối đỉnh với nhau nên ^OAM = ^BNG.

Ý sau đợi mình suy nghĩ ^^^

10 tháng 6 2017

A B C M F E 1 1 2

ΔABC vuông tại A (gt) => góc C = 45o

AM là trung tuyến nên AM _|_ BC và góc A1 = 45o, ΔAME và  ΔCMF có góc A1 = góc C (=45o)

AM = CM ( = 1/2BC) ; M1 = M2 (phụ với góc AME) 

Vậy ΔAME = ΔCMF (g-c-g), suy ra AE = CF (đpcm)

Xét tứ giác QPCM có

A là trung điểm chung của QC và PM

=>QPCM là hình bình hành

=>PQ//BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

=>AH vuông góc PQ

22 tháng 8 2023

cho mình hỏi là ngoài c/m hình bình hành còn cách nào khác ko???