\(\dfrac{AB}{AC}=\dfrac{3}{4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Rightarrow AC=\dfrac{4AB}{3}=20\left(cm\right)\)

\(\Delta ABC-\text{vuông}-\text{tại}-A-\text{có}-AH-\text{là}-\text{đ.c.}\)

(+) \(\Rightarrow BC^2=AB^2+AC^2\left(ptg\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

(+) \(\Rightarrow AC^2=CH\times BC\left(htl\right)\)

\(\Rightarrow CH=\dfrac{AC^2}{BC}=16\left(cm\right)\)

M là t.đ. của BC (AM là đ.t.tn. của \(\Delta ABC\))

=> CM = BC : 2 = 12,5 (cm)

CH - CM = 3,5 (cm)

15 tháng 6 2018

phynit Đỗ Văn Bảo Nhã Doanh ngonhuminh Thư Vy Hắc Hường Aki Tsuki Ngô Tấn Đạt Phạm Thái Dương Sky SơnTùng giải giùm mình với

15 tháng 6 2018

ve hinh up len di

24 tháng 10 2018

a, vì \(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15\)
=> ABC là tam giác vuông (theo định lí Pytago)
b, sin B = 0,6 ; sin C = 0,8 (sin = đối/huyền)
=> \(\dfrac{sinB+sinC}{sinB-sinC}=\dfrac{0,6+0,8}{0,6-0,8}=-7\)
c, AH.BC = AC.AB
=>\(AH=\dfrac{AC.AB}{BC}=\dfrac{9.12}{15}=7,2\)

28 tháng 10 2022

d: Sửa đề: AN*AB=AM*AC
AN*AB=AH^2

AM*AC=AH^2

Do đó: AN*AB=AM*AC

e: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC\cdot\dfrac{AH}{BC}=AH\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2018

Hỏi đáp Toán

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.

Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh AC, AB.

Bài 3: Cho \(B=31+\dfrac{27}{15+\dfrac{7}{2008}}\) Tìm dãy số  \(b_0,b_1,b_2,...,b_n\) biết \(B=b_o+\dfrac{1}{b_1+\dfrac{1}{\dfrac{..........}{b_{n-1}+\dfrac{1}{b_n}}}}\)

Bài 4: Cho tam giác ABC, trên cạnh AB, AC, BC lần lượt lấy các điểm M, L, K sao cho tứ giác KLMB là hình bình hành. Biết \(S_{AML}=\text{42,7283}cm^2\)\(S_{KLC}=51,4231cm^2\) . Tính diện tích tam giác ABC.

Cứu mình với mọi người ơi!!!

2
31 tháng 7 2017

  4. Dễ thấy  \(\Delta AML\approx\Delta LKC\left(g-g\right)\)

\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)

\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)

Lại có  \(\Delta AML\approx\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)

\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)

31 tháng 7 2017

1. Ta có  \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)

Mặt khác  \(BC=\sqrt{11}\Rightarrow BH+CH=11\) 

\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)

\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\)  và  \(BH=\frac{77-11\sqrt{35}}{2}\)

Có BH, CH và BC tính đc AB, AC  \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)

Từ đó tính đc chu vi tam giác ABC.

2. Để cj gửi hình qua gmail cho

3. Chỉ còn cách làm từng bước thôi e

\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)

Để viết liên phân số, ta bấm phím tìm thương và số dư:

(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)

- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết  \(B=32+\frac{1}{1+...}\)

- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết  \(B=32+\frac{1}{1+\frac{1}{3+...}}\)

- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)

- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)

...

Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng  \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3

Kết quả:  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)

a: \(AB^2-BH^2=AH^2\)

\(AC^2-CH^2=AH^2\)

Do đó: \(AB^2-BH^2=AC^2-CH^2\)

=>\(AB^2+CH^2=AC^2+BH^2\)

b: \(AC^2-AB^2=AH^2+HC^2-AH^2-HB^2\)

\(=HC^2-HB^2=2\cdot BC\cdot HM\)

 

20 tháng 12 2018

Ta có \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

Ta lại có △ABC vuông tại A đường cao AH\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{225}=\dfrac{16}{9AC^2}+\dfrac{1}{AC^2}=\dfrac{25}{9AC^2}\Leftrightarrow AC^2=625\Leftrightarrow AC=25\left(cm\right)\)

Ta có △ACH vuông tại H\(\Rightarrow AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2=25^2-15^2=400\Rightarrow CH=20\left(cm\right)\)