K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C F E H

a, Xét \(\Delta AEB\)và \(\Delta AFC\)có :

\(+,\widehat{A}\)chung

\(+,AB=AC\)\(\Delta ABC\)cân tại A )

\(+,\widehat{ABE}=\widehat{ACE}\left(\widehat{AEB}=\widehat{AFC}=90^0\right)\)

\(\Rightarrow\Delta AEB=\Delta AFC\)

b, \(\Delta AEB=\Delta AFC\left(cmt\right)\)

\(\Rightarrow AF=AE\)

Xét \(\Delta AEH\)và \(\Delta AFH\)có :

\(+,\widehat{AFH}=\widehat{AEH}=90^0\)

\(+,AF=AE\)                        \(\hept{\begin{cases}\\\Rightarrow\Delta AFH=\Delta\\\end{cases}AEH\left(c.c.c\right)}\)

\(+,AH\)chung

\(\Rightarrow\widehat{FAH}=\widehat{AEH}\)

\(\Rightarrow\)AH là tia phân giác của của góc \(\widehat{A}\)

Mặt khác \(\Delta ABC\)cân tại A

\(\Rightarrow AH\perp BC\)

c, Tự làm nhé ..

12 tháng 6 2020

nhầm đầu bài chút rồi phải là tia phân giác của góc HAC cắt BC tại M

a) xét tam giác MHA và tam giác MNA có

MHA=MNA(=90 độ)

MA chung

HAM=NAM( AM là phân giác của HAC)\=> tam giác MHA= tam giác MNA(ch-gnh)

=> AH=AN(hai cạnh tương ứng)

b) vì tam giác ABH vuông tại H=> ABH+HAB= 90 độ=> HAB=30 độ (ABH= 60 độ)

vì AM là phân giác của HAC=> HAM=MAC=BAC-BAH/2=90-30/2=30 độ

xét tam giác ABH và tam gáic MAH có

AH chung

AHB=AHM(=90 độ)

BAH=MAH(=30 độ)

=> tam giác ABH= tam gáic MAH(gcg)

=> AM=AB( hai cạnh tương ứng)

c) vì AM=AB=> tam giác ABM cân A mà ABM= 60 độ=> tam giác ABM đều => AM=MB=AB

d) vì tam giác ABC vuông tại A=> B+C=90 độ=> C=30 độ

=> C=MAN=30 độ

=> tam giác AMC cân M=> AM=MC=MB mà MB+MC=BC=> AM=1/2BC

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0