K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải chi tiếtBài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng...
Đọc tiếp

Giải chi tiết

Bài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.

Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.

Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng EB ^ EF.

Bài 5: Cho tam giác ABC có độ dài các cạnh bằng 3cm,4cm,5cm.Chứng minh rằng tam giác ABC vuông.

Bài 6: Cho tam giác ABC có độ dài các cạnh bằng 6cm,8cm,10cm.Chứng minh rằng tam giác ABC vuông.

Bài 7:Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.

3

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

22 tháng 1 2022

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)

23 tháng 9 2017

=> \(\frac{AH}{3}=\frac{BK}{4}=\frac{CJ}{5}=\frac{AH+BK+CJ}{3+4+5}=\frac{28,8}{12}=2,4\)

\(\frac{AH}{3}\)= 2,4 => AH = 2,4.3 = 7,2

\(\frac{BK}{4}\)= 2,4 => BK = 2,4.4 = 9,6

\(\frac{CJ}{5}\)= 2,4 => CJ = 2,4.5 = 12

Vậy cạnh AH = 7,2 cm ; BK = 9,6 cm ; CJ = 12 cm

24 tháng 8 2016

Do các cạnh tỉ lệ vs 3,4,5 và cạnh lớn nhất trừ cạnh nhỏ nhất =6

\(=\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)

\(\Rightarrow\frac{a}{3}=3.3=9\)

\(\Rightarrow\frac{c}{5}=3.5=15\)

Theo tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{b}{4}=3.4=12\)

Vậy a,b,c là cách cạnh của tam giác

tíc mình nha

31 tháng 10 2016

gọi 3 cạnh của tam giác đó là a,b,c 

ta có : \(\frac{a}{3}+\frac{b}{4}+\frac{c}{5}\)và c- a = 6 cm

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-4}=\frac{6}{1}=6\)( vì c chiếm 5 phần nên là số lớn nhất)

\(\frac{a}{3}=6=>a=3.6=18\)

\(\frac{b}{4}=6=>b=4.6=24\)

\(\frac{c}{5}=6=>c=6.5=30\)

vậy chu vi hình tam giác là 

18+ 24 +30= 72 cm

9 tháng 2 2019

Gọi 3 đường cao là a,b,c. Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và c - a = 9cm

Áp dụng dãy tỉ số bằng nhau: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{c-a}{4-2}=\frac{9}{2}\)

 =>\(a=\frac{9}{2}\cdot2=9\left(cm\right)\)

\(b=\frac{9}{2}\cdot3=\frac{27}{2}\left(cm\right)\)

\(c=\frac{9}{2}\cdot4=18\left(cm\right)\)

Vậy chu vi tam giác là: \(9+\frac{27}{2}+18=\frac{18}{2}+\frac{27}{2}+\frac{36}{2}=\frac{81}{2}\left(cm\right)\)

a: Gọi độ dài ba cạnh lần lượt là a,b,c

Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2

Áp dụng tính chất của DTBSN, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)

=>a=1; b=5/4; c=7/4

b: Gọi độ dài ba cạnh lần lượt là a,b,c

Theo đề, ta có:

a/2=b/4=c/5

Áp dụng tính chất của DTSBN, ta đc:

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)

=>a=6; b=12; c=15

Câu 5: 

Xét ΔABC có \(5^2=3^2+4^2\)

nên ΔACB vuông tại A

Câu 6: 

Xét ΔABC có \(10^2=6^2+8^2\)

nên ΔABC vuông tại A

23 tháng 1 2022

Bài 7 

Gọi độ dài chiều dài, rộng lần lượt là a ; b ( a > b > 0 ) 

Theo bài ra ta có : 

\(\dfrac{a}{15}=\dfrac{b}{8}\Rightarrow\dfrac{a^2}{225}=\dfrac{b^2}{64}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{a^2}{225}=\dfrac{b^2}{64}=\dfrac{a^2+b^2}{225+64}=\dfrac{2601}{289}=9\Rightarrow a=45;b=24\)(tm)

p/s : bạn đăng tách từng câu ra nhé 

13 tháng 10 2016

có thể mình biết la làm cơ mà dài lém

14 tháng 11 2021

Theo đề ta có \(AB:BC:CA=3:5:7\Rightarrow\dfrac{AB}{3}=\dfrac{BC}{5}=\dfrac{CA}{7}\)

Và \(P_{ABC}=3AB+24\Rightarrow AB+BC+CA=3AB+24\)

\(\Rightarrow-2AB+BC+CA=24\)

Áp dụng tc dtsbn:

\(\dfrac{AB}{3}=\dfrac{BC}{5}=\dfrac{CA}{7}=\dfrac{-2AB+BC+CA}{-2\cdot3+5+7}=\dfrac{24}{6}=4\\ \Rightarrow\left\{{}\begin{matrix}AB=12\left(cm\right)\\BC=20\left(cm\right)\\CA=28\left(cm\right)\end{matrix}\right.\)