Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác abc có tọa độ A(-2;3) pt đường trung tuyến BM 2x-y+1=0 và CN x+y-4=0 M,N lần lượt là trung điểm AC và AB .TÌM tọa độ B
a: vecto MH=(1;1/2)=(2;1)
=>VTPT là (-1;2)
Phương trình MH là:
-1(x-1)+2(y-1)=0
=>-x+1+2y-2=0
=>-x+2y-1=0
b: Tọa độ C là:
-x+2y-1=0 và 3x+4y-17=0
=>x=3 và y=2
=>C(3;2)
Tọa độ B là:
x=2*0-3=-3 và y=2*1/2-2=1-2=-1
Lời giải:
a) Từ giả thiết của đề ta có:
$y_C-1=0\Rightarrow y_C=1$
$y_M=\frac{y_A+y_C}{2}=\frac{3+1}{2}=2$
$x_M-2y_M+1=0\Rightarrow x_M=2y_M=1=3$
$x_M=\frac{x_A+x_C}{2}\Rightarrow x_C=2x_M-x_A=3.2-1=5$
Vậy $A(1,3); C(5,1)\Rightarrow \overrightarrow{AC}=(4,-2)\Rightarrow \overrightarrow{n_{AC}}=(2,4)=2(1,2)$
PTĐT $AC$ có dạng: $1(x-1)+2(y-3)=0$
$\Leftrightarrow x+2y-7=0$
-----------------------
$y_N-1=0\Rightarrow y_N=1$
Có: $1=y_N=\frac{y_B+y_A}{2}\Rightarrow y_B=2y_N-y_A=2.1-3=-1$
$x_B-2y_B+1=0\Rightarrow x_B=2y_B-1=2(-1)-1=-3$
Vậy $A(1,3); B(-3,-1)\Rightarrow \overrightarrow{AB}=(-4, -4)$
$\Rightarrow \overrightarrow{n_{AB}}=(4,-4)=4(1,-1)$
PTĐT $AB$ có dạng:
$1(x-1)-1(y-3)=0\Leftrightarrow x-y+2=0$
--------------
$B(-3,-1); C(5,1)\Rightarrow \overrightarrow{BC}=(8,2)$
$\Rightarrow \overrightarrow{n_{BC}}=(2,-8)=2(1,-4)$
PTĐT $BC$ có dạng: $1(x+3)-4(y+1)=0$
$\Leftrightarrow x-4y-1=0$
Phần b làm tương tự
A B C M N E H
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
M(x1;8x1+3); B(1/8y1+3/8;y1); N(x2;14/13x2-9/13); C(13/14y2+9/14; y2)
Theo đề, ta có: (13/14y2+4+9/14)=2x1 và y2-1=16x1+6
=>x1=13/90 và y2=-211/45
=>M(13/90; 187/45); C(-167/45; -211/45)
Theo đề, ta có:
1/8y1+3/8+4=2x2 và y1-1=2(14/13x2-9/13)
=>2x2-1/8y1=35/8 và 28/13x2-y1=-1+18/13=5/13
=>x2=5/2; y1=5
=>N(5/2;2); B(1/2;5)
Tọa độ trọng tâm là:
3x-5y=12 và 3x-7y=14
=>x=7/3 và y=-1
Gọi A(x1,y1); C(x2,y2)
Theo đề, ta có: x1+x2+1=7 và y1+y2-1=-3 và 3x1-5y1-12=0 và 3x2-7y2-14=0
=>x1+x2=6 và y1+y2=-2 và 3x1-5y1=12 và 3x2-7y2=14
=>x1=-1; x2=7; y1=-3; y2=1
=>A(-1;-3); C(7;1)
Tọa độ trọng tâm là:
3x-5y=12 và 3x-7y=14
=>x=7/3 và y=-1
Gọi A(x1,y1); C(x2,y2)
Theo đề, ta có: x1+x2+1=7 và y1+y2-1=-3 và 3x1-5y1-12=0 và 3x2-7y2-14=0
=>x1+x2=6 và y1+y2=-2 và 3x1-5y1=12 và 3x2-7y2=14
=>x1=-1; x2=7; y1=-3; y2=1
=>A(-1;-3); C(7;1)
+) Phương trình đường cao qua B : 2x - y + 1 = 0
=> Phương trình AC có dạng : x + 2y + c = 0
Vì A ( 2; -1 ) thuộc AC => 2 + 2 ( -1 ) + c = 0 => c = 0
=> Phương trình AC: x + 2y = 0
=> Tọa độ điểm C thỏa mãn phương trình AC và đường cao qua C
nên là nghiệm của hệ pt: \(\hept{\begin{cases}x+2y=0\\3x+y+2=0\end{cases}}\)<=> C ( -4/5; 2/5)
+) Phương trình đường cao qua B : 3x + y + 2 = 0
=> Phương trình AB có dạng : x - 3y + b = 0
Vì A ( 2; -1 ) thuộc AB => 2 - 3 ( -1 ) + b= 0 => c = -5
=> Phương trình AB: x -3y -5 = 0
=> Tọa độ điểm B thỏa mãn phương trình AB và đường cao qua CB
nên là nghiệm của hệ pt: \(\hept{\begin{cases}2x-y+1=0\\x-3y-5=0\end{cases}}\)<=> C ( -8/5; -11/5)
+) M là trung điêm BC => M ( -6/5; -9/10 )
Mà A ( 2; -1)
=> \(\overrightarrow{MA}=\left(\frac{16}{5};-\frac{1}{10}\right)\)
=> MA có véc tơ pháp tuyến: ( 1/10; 16/5)
=> Viết phương trình MA : 1/10 ( x- 2 ) + 16/5 ( y+ 1 ) = 0
<=> x + 32y+ 30 = 0
Thay tọa độ A vào 2 pt trung tuyến đều không thỏa mãn
\(\Rightarrow\) 2 trung đó đó xuất phát từ B và C, giả sử trung tuyến xuất phát từ B có pt x-2y+1=0 và từ C có pt y=1
\(\Rightarrow B\left(2b-1;b\right)\) ; \(C\left(c;1\right)\)
Gọi G là trọng tâm tam giác \(\Rightarrow\) G là giao điểm 2 trung tuyến nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x-2y+1=0\\y=1\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)
Áp dụng công thức trọng tâm:
\(\left\{{}\begin{matrix}1+2b-1+c=3.1\\3+b+1=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2b+c=3\\b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-1\\c=5\end{matrix}\right.\)
\(\Rightarrow B\left(-3;-1\right)\) ; \(C\left(5;1\right)\)
Biết 3 tọa độ 3 đỉnh của tam giác, dễ dàng viết được phương trình các cạnh
Lời giải:
Gọi giao điểm của $AM$ và $CN$ là $I$
Khi đó $BI$ là đường trung tuyến của tam giác $ABC$ theo tính chất ba đường trung tuyến đồng quy tại một điểm. Theo đó phương trình trung tuyến $BE$ cũng trùng với $BI$
Giao điểm $I$ có tọa độ là nghiệm của HPT:
\(\left\{\begin{matrix} 3x+2y-9=0\\ x-1=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x+2y-9=0\\ x=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3+2y-9=0\\ x=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y=3\\ x=1\end{matrix}\right.\)
Vậy $I(1;3)$
Gọi pt đường thẳng $BI$ là $y=ax+b$
Ta có: \(B(-1;3); I(1;3)\in BI\Rightarrow \left\{\begin{matrix} 3=a+b\\ 3=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=0\\ b=3\end{matrix}\right.\)
Vậy PT đường trung tuyến là: \(y=3\Leftrightarrow y-3=0\)
b)
Vì \(A\in AM\Rightarrow A(a, \frac{9-3a}{2})\)
Vì \(C\in CN\Rightarrow C(1; c)\)
$I(1;3)$ là trọng tâm của tam giác $ABC$ nên:
\(\left\{\begin{matrix} \frac{x_A+x_B+x_C}{3}=x_I\\ \frac{y_A+y_B+y_C}{3}=y_I\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} \frac{a+(-1)+1}{3}=1\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{c+3}{3}=3\end{matrix}\right.\Rightarrow a=3; c=6\)
Vậy tọa độ A là: \((3; 0)\), tọa độ C là \((1;6)\)
Os. Htt mình chỉ bảo cho bạn cách lập luận có suy luận
(không lên chỉ biết dựa thụ động vào lý thuyết )
G trọng tâm =>giao CN và AM G(1;3)
BE qua G ; tung độ B và G giống nhau
=> BE//ox qua G => pttq BE ; y-3 =0