\(\frac{AM}{MB}=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Bạn tham khảo đây nè:

https://olm.vn/hoi-dap/question/883508.html

SMNP = \(\frac{1}{3}\)SABC = \(\frac{27}{3}\) = 9 cm2

31 tháng 3 2017

SMNP = \(\frac{1}{3}\)SABC = \(\frac{27}{3}\) = 9 cm2

Tham khảo 883508 nhé.

26 tháng 2 2018

A B C M N P

a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)

b) Hoàn toàn tương tự như câu a, ta có:

\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)

\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)

\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)

c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)

\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)

\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)

5 tháng 10 2016

Cô nghĩ tỉ lệ là \(\frac{MB}{MC}=\frac{NC}{NA}=\frac{PA}{BP}=k\)

Khi đó \(\frac{S_{NMC}}{S_{ABC}}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\Leftrightarrow S_{NMC}=\frac{kS}{\left(k+1\right)^2}\)

Tương tự \(S_{ANP}=S_{BPM}=\frac{kS}{\left(k+1\right)^2}\)

Vậy \(S_{MNP}=S-\frac{3kS}{\left(k+1\right)^2}.\)

5 tháng 10 2016

khó hiểu wá!

17 tháng 3 2017

SBMN = \(\frac{1}{2}\)BN.h1 (h1 là đường tam giác BMN cao kẻ từ M)

=\(\frac{1}{2}\)\(\frac{BC}{3}\)\(\frac{2h}{3}\) (h là đường cao tam giác ABC kẻ từ A)

= \(\frac{2}{9}\)SABC

Tương tự cho tam giác AMP và CNP

=> SMNP = SABC - 3SBMN

= SABC - \(\frac{2}{3}\)SABC

= \(\frac{1}{3}\)SABC

= \(\frac{27}{3}\) = 9 cm2

27 tháng 11 2019

Tính diện tích tam giác DEF ạ