K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Bạn đã biết làm bài đó chưa vậy .... nếu rồi thì gửi cho mình được không

5 tháng 7 2016

A B C M A1 B1 C1 H K

Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.

Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\) 

Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)

Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)

 

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

15 tháng 2 2017

Bài 1: 

Ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y+z=0\\z+x=0\end{cases}}\)

Với x = - y thì

\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{-y}+\frac{1}{y}+\frac{1}{z}=\frac{1}{z}\)

\(Q=\frac{1}{x+y+z}=\frac{1}{-y+y+z}=\frac{1}{z}\)

\(\Rightarrow\)P = Q

Tương tự cho 2 trường hợp còn lại

16 tháng 2 2017

Ối trời Hình bạn phải vẽ ra: 

4 tháng 8 2016

d)  2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\)                              (1)

2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\)                                 (2)

Từ  (1)  và  (2)  ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)

Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)

Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).

3 tháng 8 2016

a) Tg OBD và Tg ECO có 
g OBD = g ECO (tg ABC cân tại A) (1) 
g BOD = g OEC (gt) (2) 
(1) và (2) => Tg OBD đồng dạng Tg ECO 
=>OB/EC = BD/CO => OB*CO = EC*BD. 
Mà OB = CO => OBbình = EC*BD 
b) Ta có: gDOE = 180 độ - (gBOD + gEOC) 
= 180 độ - (gOEC + gCOE) 
= 180 độ - (180 độ - gOCE) 
= gOCE = gBCA = const (3) 
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO => 
=> OD*BO = EO*BD => EO/OB = OD/BD (4) 
Mặt khác: từ(3) =>gDOE = gOBD (5) 
từ (4) và (5) => TgEOD đồng dạng TgOBD