Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)
\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)
\(=\frac{9}{16}+\frac{7}{16}\)
=1
![](https://rs.olm.vn/images/avt/0.png?1311)
MA=MB; NB=NC => MN là đường trung bình của tg ABC => MN//AC (1)
Xét tg ACD và tg END có
^ADC = ^EDN (góc đối đỉnh)
CN=BC/2; CD=BC/4 => CD=CN/2 hay DC=DN
DA=DE
=> tg ACD = tg END (c.g.c) => ^DAC = ^DEN => EN//AC (2)
Từ (1) và (2) => MN trùng EN (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 dt // với đường thẳng đã cho)
=> M;N;E thẳng hàng
CẬU ƠI LỚP 7 ĐÃ HỌC ĐƯỜNG TRUNG BÌNH đâu , bài này tớ có cách khác
A B C D E M N
A) NỐI B VÀ E
TA CÓ
\(DC=\frac{1}{4}BC\left(1\right)\)
MÀ \(NC=\frac{1}{2}BC\)
THAY \(ND+DC=\frac{1}{2}BC\)
THAY (1) VÀO TA CÓ
\(ND+\frac{1}{4}BC=\frac{1}{2}BC\)
\(\Leftrightarrow ND=\frac{1}{2}BC-\frac{1}{4}BC\)
\(\Leftrightarrow ND=BC\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(\Leftrightarrow ND=\frac{1}{4}BC\)
MÀ \(DC=\frac{1}{4}BC\)
\(\Rightarrow ND=DC\left(2\right)\)
TA LẠI CÓ \(BN=NC\left(gt\right)\)
THAY \(BN=ND+DC\)
THAY (2) VÀO TA CÓ
\(BN=2ND\)
MÀ \(BN+ND=BD\)
THAY \(2ND+ND=BD\)
\(\Leftrightarrow3ND=BD\)
\(\Leftrightarrow ND=\frac{1}{3}BD\)
VÌ AD = DE => BD LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABE\)
MÀ \(ND=\frac{1}{3}BD\)
=> N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)
VÌ AM=BM
=> EM LÀ ĐƯỜNG TRUNG TUYẾN THỨ 2 CỦA \(\Delta ABE\)
MÀ N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)
=> EM BẮT BUỘT ĐI QUA N
=> BA ĐIỂM E,M,N THẲNG HÀNG (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D
Trên tia đối của MA lấy điểm D sao cho MA = MD
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (cách vẽ)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
\(\Rightarrow AB=CD\)(2 cạnh tương ứng)
Xét \(\Delta ACD\) có: \(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)
Xét \(\Delta MAB\)có: \(AM>AB-BM\)
Xét \(\Delta MAC\)có: \(AM>AC-MC\)
\(\Rightarrow AM+AM>AB-BM+AC-MC\)
\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)
\(\Rightarrow2AM>AB+AC-BC\)
\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D
Trên tia đối của tia AM lấy điểm D sao cho AM=MD
Xét tam giác AMB VÀ TAM GIÁC DMC có
MB=MC(gt)
AM=MD(cách dựng)
\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)
\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)
\(\Rightarrow\)AB=CD(2 cạnh tương ứng)
Xét tam giác ACD có
AD<CD+AC(bất đẳng thức tam giác)
\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)
Mà AD=AM+MD=2AM
\(\Rightarrow2AM< AB+AC\)
\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)
Kẻ đoạn thẳng AM
Trên tia AM lấy điểm K sao cho M là trung điểm của AK
=> MA = MK = AK/2 => 2AM = AK
M là trung điểm của BC ( gt ) => MB = MC
Xét tam giác AMB và tam giác KMC có :
MA = MK ( cmt )
AMB = KMC ( đối đỉnh )
MB = MC ( cmt )
Do đó tam giác AMB = tam giác KMC ( c . g . c )
=> AB = CK ( 2 cạnh tương ứng )
CÓ AK < AC + CK ( bất đẳng thức trong tam giác )
hay 2AM < AC + AB
=> AM < \(\frac{AC+AB}{2}\)( dpcm )
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D M c b
Trên tia đối của tia MA lấy điểm D sao cho MD=MA
Xét \(\Delta AMB\)và \(\Delta DMC\):
MB=MC(gt)
\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)
BM=CM(gt)
=> \(\Delta AMB=\Delta DMC\left(c.-g-c\right)\)
=> DC=AB=c
Xét \(\Delta ACD\)có: AD<AC+DC
=> 2AM<b+c
=> \(AM< \frac{b+c}{2}\)
=> Đpcm
P/s:Phần này là phần BĐT tam giác ý, dễ mà:>