Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: EB=EI(gt)
mà E nằm giữa hai điểm B và I
nên E là trung điểm của BI
Xét tứ giác AICB có
E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)
E là trung điểm của đường chéo BI(cmt)
Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)
Ta có: DC=DK(gt)
mà D nằm giữa K và C
nên D là trung điểm của KC
Xét tứ giác AKBC có
D là trung điểm của đường chéo KC(cmt)
D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)
Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)
Từ (1) và (2) suy ra AK=AI(3)
Từ (1) và (2) suy ra AK//AI
mà AK và AI có điểm chung là A
nên K,A,I thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)
b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm
Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)
mà F∈KB
nên AC//KF
Xét ΔIKF có
A là trung điểm của KI(cmt)
AC//KF(cmt)
Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)
Ta có: CB//AK(cmt)
mà I∈AK
nên CB//KI
Xét ΔFIK có
C là trung điểm của FI(cmt)
CB//KI(cmt)
Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)
Xét ΔFKI có
FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)
IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)
KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)
Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI
hay FA,IB,KC đồng quy(đpcm)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
mk bỏ sung đề: BE cắt CF tại I A B C E F D M K I a)Ta có
IE + IF > BC
\(\Rightarrow\dfrac{3}{2}\left(IE+IF\right)>\dfrac{3}{2}BC\Leftrightarrow BE+CF>\dfrac{3}{2}BC\)
b) trong ΔABC I là giao của 2 đường trung tuyến nên I là trọng tâm
\(\Rightarrow IB=\dfrac{2}{3}BE=\dfrac{1}{3}BD\)
trong ΔADC K là giao của 2 đường trung tuyến nên K là trọng tâm
\(\Rightarrow KD=\dfrac{2}{3}DE=\dfrac{1}{3}BD\)
⇒IB = KD
\(\Rightarrow IK=\dfrac{1}{3}BD\)
Vậy IB = IK = KD