K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

a)Xét tam giác DBC và tam giác DMA có :

   DA = DC (gt)

   góc ADM = góc BDC (dối đỉnh)

   BD =DM (gt)

=>tg DBC= tg DMA(c.g.c)

=> MA= BC( 2 cạnh tương ứng) (1)

Xét tg ENA và tg ECB có:

   EA = EB (gt)

   góc NEA = góc CEB(đối đỉnh)

   EN= EC (gt)

=> tg ENA= tg ECB (c.g.c)

=> NA= BC (2 cạnh tương ứng) (2)

và A là trung nằm giữa M và N 

Từ (1) và (2)=> MA= NA

=> A là trung điểm của đoạn MN.

23 tháng 4 2016

AI GIẢI ĐƯỢC CÂU B GIẢI MK VỚI 

MK cần gấp lắm nhé

a: Xét tứ giác ANBC có

E là trung điểm của CN

E là trung điểm của AB

Do đó: ANBC là hình bình hành

Suy ra: AN//BC và AN=BC(1)

Xét tứ giác ABCM có 

D là trung điểm của AC

D là trung điểm của BM

Do đó: ABCM là hình bình hành

Suy ra: AM//BC và AM=BC(2)

Từ (1) và (2) suy ra A là trung điểm của NM

b: BD+CE=3/2BG+3/2CG=3/2(BG+CG)>3/2BC

8 tháng 5 2019

Gọi I là trung điểm của BC, hiển nhiên A, I, G thẳng hàng ! AI là trung tuyến của tg ABC!  Vì BD = CE nên CG=BG (=2/3 CE). Tạm giác BGC cân tại G, nên GI  vuông góc với BC hay nói cách khác AI vuông góc BC :  tạm giác ABC phải là tg cân tại A! Đpcm AG là phân giác góc A!                                                                            2/ EG=NG nên N là trung điểm CG( tính chất trung tuyến CG=2 GE)! Tương tự M là trung điểm AG!  Vay thì GD , CM, AN là 3 trung tuyến của tam giác AGC, đồng quy! Mà GD cũng là BD!!!!

a) Ta có DM=DG \Rightarrow GM=2 GDDM=DGGM=2GD.

Ta lại có GG là giao điểm của BDBD và CE \Rightarrow GCEG là trọng tâm của tam giác ABCABC

\Rightarrow BG=2 GDBG=2GD.

Suy ra BG=GMBG=GM.

Chứng minh tương tự ta được CG=GNCG=GN.

b) Xét tam giác GMNGMN và tam giác GBCGBC có GM=GBGM=GB (chứng minh trên);

\widehat{MGN}=\widehat{BGC}MGN=BGC (hai góc đối đỉnh);

GN=GCGN=GC (chứng minh trên).

Do đó \triangle GMN=\triangle GBCGMN=GBC (c.g.c)

\Rightarrow MN=BCMN=BC (hai cạnh tương ứng).

Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG}GMN=GBCNMG=CBG (hai góc tương ứng).

Mà \widehat{NMG}NMG và \widehat{CBG}CBG ờ vị trí so le trong nên MNMN // BCBC.

20 tháng 4 2023

a) Ta có ��=��⇒��=2��DM=DGGM=2GD.

Ta lại có G là giao điểm của ��BD và ��⇒�CEG là trọng tâm của tam giác ���ABC

⇒��=2��BG=2GD.

Suy ra ��=��BG=GM.

Chứng minh tương tự ta được ��=��CG=GN.

b) Xét tam giác ���GMN và tam giác ���GBC có ��=��GM=GB (chứng minh trên);

���^=���^MGN=BGC (hai góc đối đỉnh);

��=��GN=GC (chứng minh trên).

Do đó △���=△���GMN=GBC (c.g.c)

⇒��=��MN=BC (hai cạnh tương ứng).

Theo chứng minh trên △���=△���⇒���^=���^GMN=GBCNMG=CBG (hai góc tương ứng).

Mà ���^NMG và ���^CBG ờ vị trí so le trong nên ��MN // ��BC.