K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

A B C M Q E F P H

Gọi BE giao CF tại H. Khi đó ^AHP = ^ACB (Cùng phụ ^HAC), ^HAP = ^CMA (Cùng phụ ^MAH)

Do vậy \(\Delta\)APH ~ \(\Delta\)MAC (g.g), suy ra \(\frac{AP}{MA}=\frac{AH}{MC}\)

Tương tự \(\Delta\)AQH ~ \(\Delta\)MAB, suy ra \(\frac{AQ}{MA}=\frac{AH}{MB}\)

Vì M là trung điểm BC nên \(\frac{AH}{MB}=\frac{AH}{MC}\). Vậy \(\frac{AP}{MA}=\frac{AQ}{MA}\Rightarrow AP=AQ\)(đpcm).

25 tháng 8 2019

nguyễn tất đạt đó là bn giải theo cách của lp mấy v

Xét tứ giác QPCM có

A là trung điểm chung của QC và PM

=>QPCM là hình bình hành

=>PQ//BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

=>AH vuông góc PQ

22 tháng 8 2023

cho mình hỏi là ngoài c/m hình bình hành còn cách nào khác ko???

1 tháng 9 2018

A B C P E F N G M K H D Q

Đề còn thiếu thì phải, điểm M ở đâu ?

Bổ sung: "Đường thẳng qua A vuông góc với PF cắt tia CF tại M ..."

Giải: Gọi D là trực tâm tam giác ABC. PE cắt AN tại Q

Dễ thấy: ^ADE = ^ACB (Cùng phụ ^DAC) (1)

\(\Delta\)BEC vuông tại E có trung tuyến EP => ^PEC = ^ECP = ^ACB

Mà ^PEC = ^ AEQ = ^ANE (Do ^AEQ và ^ANE cùng phụ ^QEN) => ^ANE = ^ACB (2)

Từ (1) và (2) => ^ADE = ^ANE => AE là phân giác ^DAN 

Xét \(\Delta\)ADN có: phân giác AE; AE vuông góc DN (tại E) => \(\Delta\)ADN cân tại A

=> E là trung điểm DN => GE là đường trung bình \(\Delta\)CDN => GE // CD

Lại có: CD vuông góc AB => GE vuông góc AB hay EH vuông góc AF

Tương tự ta c/m được FH vuông góc với AE

Trong \(\Delta\)AEF có: EH vuông góc AF và FH vuông góc AE 

Nên H là trực tâm \(\Delta\)AEF => AH vuông góc với EF (ĐPCM).

1 tháng 9 2018

Từ chỗ ^ADE = ^ANE suy ra tam giác DAN cân tại A luôn nhé. Vừa nãy mình nhìn nhầm :(

18 tháng 12 2022

a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

góc FBC=góc ECB

Do đó: ΔFBC=ΔECB

=>CF=EB

b: Xét ΔMBC có góc MBC=góc MCB

nên ΔMCB cân tại M

=>MB=MC

mà AB=AC

nên AM là trung trực của BC

2 tháng 2 2016

mik moi hoc lop 5

2 tháng 2 2016

có ai hỏi bạn đâu mà bạn trả lời : @winx bloom

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0