Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)
=>AM=1/2*BC=BM=CM
xét tam giácBMA và tam giác DMC có :
AM=MD(gt)
góc BMA=góc DMC (đ đ)
BM=MC(gt)
=> 2 tam giác đó bằng nhau(c-g-c)
=>ACB=ADC(2GTU)
AB=DC(2ctu)
ta có BM+CM =BC, AM+MD=AD
mà BM=CM, AM=MD
và AM=BM=CM
=> BC=AD
xét tam giác BAC và tam giác DCA có :
BA=DC (cmt)
AC là cạnh chung
BC=AD (cmt)
=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC
A B C H E D I
a) xét tam giác AHB và tam giác AHD ta có
AH=AH ( cạnh chung)
BH=HD(gt)
góc AHB= góc AHD (=90)
-> tam giác AHB= tam giác AHD (c-g-c)
b) ta có
DE vuông góc AC (gt)
AB vuông góc AC ( tam giác ABC vuông tại A)
-> DE//AB
ta có
AC>AB (gt)
-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)
c) Xét tam giác AHB và tam giác IHD ta có
AH=HI (gt)
BH=HD(gt)
góc AHB= góc IHD (=90)
-> tam giac AHB = tam giác IHD (c-g-c)
-> góc BAH= góc HID ( 2 góc tương ứng )
mà 2 góc nẳm ở vị trí sole trong
nên BA//ID
ta có
BA//ID (cmt)
BA//DE (cm b)
-> ID trùng DE
-> I,E,D thẳng hàng
A B C H D I K I E
a) Xét \(\Delta ADI\)và \(\Delta AHI\),ta có:
-AD=AH (GT)
AI chung
DI = HI (GT- I là trung điểm HD )
=> \(\Delta ADI=\Delta AHI\left(c.c.c\right)\)
b) từ a, suy ra \(\widehat{HAI}=\widehat{DAI}\)hay \(\widehat{HAK}=\widehat{DAK}\)
Xét \(\Delta AHK\)và \(\Delta ADK\), ta có:
AH = AD (gt)
\(\widehat{HAK}=\widehat{DAK}\)( chứng minh trên)
AK chung
=> \(\Delta AHK=\Delta ADK\left(c.g.c\right)\)
=> \(\widehat{ADK}=\widehat{AHK}=90^o\)
=> \(DK\perp AC\)
mà \(AB\perp AC\)
=> DK // AB (1)
c, nối E với D
- Xét \(\Delta ADE\)và \(\Delta AHC\), ta có:
AD=AH(gt)
\(\widehat{DAE}=\widehat{HAC}\)( chung góc A)
AE = AC ( vì AH=AD, HE= DC=> AH+HE = AD+DC => AE=AC)
=>\(\Delta ADE=\Delta AHC\left(c.g.c\right)\)
=> \(\widehat{ADE}=\widehat{AHC}=90^o\) hay \(DE\perp AC\)=> DE // AB (2)
Từ (1) và (2) , suy ra D,K,E thẳng hàng (đpcm)
a. Theo định lí Pitago:
Ta có: AB2 + AC2 = BC2
42 + AC2 = 52
16 + AC2 = 25
AC2 = 25 - 16
AC2 = 9
AC2 = 33
=> AC = 3 (cm)
Xét tam giác ABH và DBH đều vuông tại H có:
BH cạnh chung
HA = HD (gt)
Do đó: Δ A B H = Δ D B H (hai cạnh góc vuông)
Suy ra AB = BD (2) (hai cạnh tương ứng)
Chứng minh tương tự, ta cũng có Δ A C H = Δ D C H (hai cạnh góc vuông)
Do đó: AC = DC (3) (hai cạnh tương ứng)
Từ (1) và (2) suy ra BD < AC hay AC > BD ⇒ D đúng
Từ (1) và (3) suy ra DC > AB ⇒ C đúng
Từ (1), (2) và (3) suy ra DB < DC ⇒ B sai
Chọn đáp án B