Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không vẽ hình vì sợ duyệt.
Kẻ đường phân giác AD của \(\Delta ABC\).
Dễ thấy \(\widehat{BAD}=\widehat{CAD}=\widehat{B}=\frac{\widehat{BAC}}{2}\)
Từ đó dễ dàng chứng minh \(\Delta ABD\)cân tại D \(\Rightarrow AD=BD\)
\(\Delta CAD\)và \(\Delta CBA\)có:
\(\widehat{C}\)chung và \(\widehat{CAD}=\widehat{B}\left(=\frac{\widehat{BAC}}{2}\right)\)\(\Rightarrow\Delta CAD~\Delta CBA\left(g.g\right)\)
\(\Rightarrow\frac{AC}{BC}=\frac{CD}{AC}=\frac{AD}{AB}\)\(\Rightarrow\hept{\begin{cases}AC^2=BC.CD\\AB.AC=BC.AD=BC.BD\left(AD=BD\right)\end{cases}}\)
\(\Rightarrow AC^2+AB.AC=BC.CD+BC.BD\)\(=BC\left(CD+BD\right)\)\(=BC.BC\)\(=BC^2\)
Ta có đpcm.
***Hình bạn tự vẽ nha***
a, Xét tam giác ABC và tam giác BHA có :
Góc ABC chung
Góc BAC = góc BHA ( =90°)
==> Tam giác ABC đồng dạng tam giác HBA ( g.g )
==> AB/HB = BC/AB ==> AB^2 = HB. BC
-Kẻ BH vuông góc với AM; CK vuông góc với AM(H,K thuộc AM). => BHCK là hình bình hành
=> BH= CK; M là trung điểm của BC nên cũng là trung điểm của HK.
-Áp dụng định lý Pytago vào tam giác AHB vuông tại H; tam giác BHM vuông tại H; tam giác AKC vuông tại K, ta có: AH^2+ BH^2=AB^2.
BH^2+HM^2=BM^2.
AK^2+KC^2=AC^2.
-Từ các điều ở trên ta có : BH^2+HM^2= (BC/2)^2.
=> 4.BH^2+4.HM^2 =BC^2.
=> 2.BH^2= (BC^2)/2 -2.HM^2.
=> 2.BH^2+4.HM^2= 2.HM^2+ (BC^2)/2.
=> 2.BH^2+2.AH^2 +4.HM^2+ 4.AH.HM= 2.AH^2+ 2.HM^2+ 4.AH.HM+ (BC/2)^2.
=> BH^2+CK^2+ AH^2+( AH^2+4.HM^2+ 4.AH.HM) =2.(AH^2+ HM^2+2.AH.HM) +(BC/2)^2.
=> BH^2+ AH^2+ CK^2+(AH^2+ HK^2+ 2.AH.HK) = 2.AM^2+ (BC/2)^2.
=> AB^2+ (CK^2+ AK^2)= 2.AM^2 + (BC/2)^2.
=> AB^2+AC^2= 2.AM^2 + (BC/2)^2 (đpcm).
A B C M H Đề bài đúng phải là
Từ A dựng đường cao AH vuông góc với BC tại H
Ta có : \(AB^2=AH^2+BH^2=\left(AM^2-MH^2\right)+BH^2\)
\(=AM^2-\left(MH^2-BH^2\right)=AM^2-\left(MH-BH\right)\left(MH+BH\right)\)
\(=AM^2-\left(MH-BH\right).BM=AM^2-\frac{BC}{2}\left(MH-BH\right)\)
\(AC^2=AH^2+HC^2=\left(AM^2-HM^2\right)+HC^2\)
\(=AM^2-\left(HM^2-HC^2\right)=AM^2-\left(HM-HC\right)\left(HM+HC\right)\)
\(=AM^2+\left(HC-HM\right).\left(HM+HC\right)\)
\(=AM^2+\frac{BC}{2}.\left(HM+HC\right)\)
\(\Rightarrow AB^2+AC^2=2AM^2-\frac{BC}{2}\left(MH-BH-MH-CH\right)\)
\(=2AM^2-\frac{BC}{2}.\left(-BC\right)=2AM^2+\frac{BC^2}{2}\)