K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Đường tròn

Câu a:

Xét ΔICM vuông tại I và ΔICN vuông tại I có:

• IC chung
\(\widehat{ICM}=\widehat{ICN}\left(\text{do IC là tia phân giác của }\widehat{ACB}\right)\)

⇒ ΔICM ∼ ΔICN (g - c - g)

⇒ • IM = IN
\(\widehat{IMC}=\widehat{INC}\)

\(\widehat{IMC}+\widehat{IMA}=\widehat{INC}+\widehat{INB}\left(=180^0\right)\)

\(\widehat{IMA}=\widehat{INB}\)

\(\widehat{IMA}+\widehat{A_2}+\widehat{I_1}=\widehat{INB}+\widehat{B_2}+\widehat{I_2}\left(=180^0\right)\)

\(\widehat{A_2}+\widehat{I_1}=\widehat{B_2}+\widehat{I_2}\) (1)

Mặt khác, ΔIAB có: \(\widehat{A_1}+\widehat{B_1}=180^0-\widehat{I_3}=\widehat{I_1}+\widehat{I_2}\)

mà • \(\widehat{A_1}=\widehat{A_2}\left(\text{do IA là tia phân giác của }\widehat{BAC}\right)\)
\(\widehat{B_1}=\widehat{B_2}\left(\text{do IB là tia phân giác của }\widehat{ABC}\right)\)

nên \(\widehat{A_2}+\widehat{B_2}=\widehat{I_1}+\widehat{I_2}\) (2)

Trừ (1) và (2) vế theo vế, suy ra \(\widehat{I_1}-\widehat{B_2}=\widehat{B_2}+\widehat{I_1}\)

\(2\widehat{I_1}=2\widehat{B_2}\)

\(\widehat{I_1}=\widehat{B_2}\)

\(\widehat{IMA}=\widehat{INB}\)

⇒ ΔIMA ∼ ΔBNI (g - g)

⇒ AM . BN = IM . IN = IM2 = IN2 (do IM = IN)

21 tháng 2 2018

Câu b:

Ta có: \(\widehat{I_3}+\widehat{I_1}+\widehat{I_2}=\widehat{IMA}+\widehat{I_1}+\widehat{A_2}\left(=180^0\right)\)

\(\widehat{I_2}=\widehat{A_2}\left(\Delta IMA\text{ ~ }\Delta BNI\right)\)

\(\widehat{I_3}=\widehat{IMA}\)

\(\widehat{A_1}=\widehat{A_2}\)

⇒ ΔIAB ∼ ΔMAI (g - g) ∼ ΔNIB

⇒ • IA2 = AM . AB
• IB2 = NB . AB

Đặt \(P=\dfrac{IA^2}{AB\times AC}+\dfrac{IB^2}{AB\times BC}+\dfrac{IC^2}{AC\times BC}\)

\(=\dfrac{AM\times AB}{AB\times AC}+\dfrac{NB\times AB}{AB\times BC}+\dfrac{CM^2-IM^2}{AC\times BC}\)

\(=\dfrac{AM}{AC}+\dfrac{NB}{BC}+\dfrac{CM^2-AM\times NB}{AC\times BC}\)

\(=\dfrac{AM\times BC+NB\times AC+CM\times CN-AM\times NB}{AC\times BC}\)
(do CM = CN vì ΔICM = ΔICN)

\(=\dfrac{AM\times CN+NB\times AC+CM\times CN}{AC\times BC}\)

\(=\dfrac{AC\times CN+NB\times AC}{AC\times BC}=1\)

Vậy ta có đpcm.

24 tháng 3 2020

a) Hai tam giác IAB và ICA đồng dạng với nhau do có góc I chung và \(\widehat{IAB}=\widehat{ICA}\) (Tính chất của góc tạo bởi tia tiếp tuyến và dây cung) ⇔ \(\frac{S_{IAB}}{S_{ICA}}=\frac{AB^2}{AC^2}\)

Đồng thời ta có các tỉ số: \(\frac{IB}{IA}=\frac{IA}{IC}=\frac{AB}{CA}\)

Dễ thấy \(\frac{S_{IAB}}{S_{ICA}}=\frac{IB}{IC}\)

Vậy \(\frac{IB}{IC}=\frac{AB^2}{AC^2}\)

b) Dựa vào (1), ta suy ra: \(\frac{IC-24}{IA}=\frac{IA}{IC}=\frac{20}{28}=\frac{5}{7}\)

⇒ IA = 35 cm; IC = 49 cm; IB = 21 cm.

10 tháng 7 2020

Câu b tính như nào vậy bạn ơi, mình chưa hiểu lắm