K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

27 tháng 7 2023
a: Xét ΔDAB và ΔDEM có
DA=DE
góc ADB=góc EDM
DB=DM
=>ΔDAB=ΔDEM
b: ΔDAB=ΔDEM
=>góc DAB=góc DEM
=>AB//ME

K
2 tháng 3
- Chứng minh ∆ADE = ∆ABC:
Dùng tiêu chí Cạnh-Góc-Cạnh vì:- \(A B = A D\) (A là trung điểm của BD).
- \(A C = A E\) (A là trung điểm của CE).
- \(\angle B A C = \angle D A E\) (góc đối đỉnh).
- Chứng minh DE // BC:
Vì \(\Delta A D E = \Delta A B C\) (theo C-G-C), nên:
\(\angle A D E = \angle A B C\) và \(\angle D E A = \angle A C B\).
→ DE // BC theo định lý góc đồng vị. - Chứng minh M, A, N thẳng hàng:
M, N lần lượt là trung điểm của DE và BC nên AM là đường trung bình của tam giác lớn. Đường trung bình đi qua trung điểm nối song song với cạnh còn lại nên M, A, N thẳng hàng.
Hình vẽ:
A B C E D M
Giải:
a) Xét tam giác DAB và tam giác DEM, có:
\(BD=MD\) (M là trung điểm BM)
\(AD=ED\) (gt)
\(\widehat{BDA}=\widehat{MDE}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DAB=\Delta DEM\left(c.g.c\right)\)
b) Có: \(\Delta DAB=\Delta DEM\) (câu a)
\(\Rightarrow\widehat{BAD}=\widehat{MED}\) (Hai góc tương ứng)
\(\Rightarrow AB//ME\) (Vì có hai góc so le trong bằng nhau)
c) Theo đề ra, ta có:
\(BC=2AB\Leftrightarrow AB=\dfrac{1}{2}BC\) (1)
Lại có: M là trung điểm BC
\(\Rightarrow MC=\dfrac{1}{2}AB\) (2)
Từ (1) và (2) => \(AB=MC\)
Mặt khác: \(AB=ME\) (\(\Delta DAB=\Delta DEM\))
\(\Rightarrow MC=ME\)
\(\Rightarrow\Delta MEC\) cân tại M