K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 3 2021
Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho
BD = BA.
Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.
a)Chứng minh : ; c) Chứng minh : AK = AH. | b)Chứng minh : AD là phân giác của góc HAC |
BAˆD = BDˆA
a) Xét ΔABMΔABM và ΔACBΔACB có:
ˆAA^ chung
ˆABM=ˆACBABM^=ACB^
Do đó ΔABMΔABM ∽ ΔACBΔACB (g - g)
b) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
và ABAC=AMABABAC=AMAB (Đ/n hai tam giác đồng dạng)
⇒AM=AB2AC=224=1(cm)⇒AM=AB2AC=224=1(cm)
c) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
⇒ˆAMB=ˆABC⇒AMB^=ABC^
⇒ˆAMK=ˆABH⇒AMK^=ABH^
Xét ΔAHBΔAHB và ΔAKMΔAKM có:
ˆAHB=ˆAKM=900AHB^=AKM^=900 (Vì AH⊥BC,AK⊥BMAH⊥BC,AK⊥BM
ˆABH=ˆAMKABH^=AMK^ (cmt)
Do đó ΔAHBΔAHB ∽ ΔAKMΔAKM (g - g)
Suy ra AHAK=ABAMAHAK=ABAM
⇒AH.AM=AB.AK⇒AH.AM=AB.AK (đpcm)