K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

giải hộ ý b ý a mk làm òi

5 tháng 10 2017

Mình làm câu a thôi nha

a) Gọi M là trung điểm của BC , dễ dàng chứng minh được t/g MDE cân ở đỉnh M

Gọi I là trung điểm của DE thì MI vuông góc DE suy ra MI // BH // CE . MI là đường trung bình của hình thang BHKC có :

IH = IK

Từ đó suy ra IH - IE = IK - ID

               nên HE = KD hay EH = DK  ( đpcm )

27 tháng 3 2020

38i5t0 oQ@juoopjJJOJKLOJKOPKOKPURDTSE3SWDFFhuuhhjiojiojio

18 tháng 5 2020

giải câu b đi

24 tháng 3 2017

Có thể cách làm của mình sẽ hơi dài dòng bạn chỉnh sửa dùm mình nha: A B C D E H K

a) Xét tam giác AEC và tam giác ADB:

Góc A:chung ; \(\widehat{ADB}=\widehat{AEC}\left(=90\right)\) \(\Rightarrow\Delta AEC~\Delta ADB\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)(1)

Xét tam giác ADE và tam giác ABC có:(1) và góc A:chung

\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(2\right);\widehat{AED}=\widehat{ACB}\left(3\right)\)

Xét tam giác KDC và tam giác EBC:\(\widehat{BEC}=\widehat{DKC}\left(=90\right)\); \(\widehat{KDC}=\widehat{ABC}\left(=\widehat{ADE}\right)\)

\(\Rightarrow\Delta EBC~\Delta KDC\left(g.g\right)\Rightarrow\dfrac{DK}{BE}=\dfrac{CD}{BC}\left(4\right)\)

Tương tự ta có:\(\Delta BHE~\Delta BDC\left(g.g\right)\Rightarrow\dfrac{HE}{CD}=\dfrac{BE}{BC}\Rightarrow\dfrac{HE}{BE}=\dfrac{CD}{BC}\left(5\right)\)

Từ (4) và (5) ta có: KD=HE(đpcm)

b)Xét:\(S_{BHKC}=S_{BEC}+S_{BHE}+S_{EKC}\)

Ta có:\(\Delta BHE~\Delta BDC\Rightarrow\dfrac{S_{BHE}}{S_{BDC}}=\dfrac{BE^2}{BC^2}\left(6\right)\)

Xét tam giác BDC và tam giác EKC có:\(\widehat{BDC}=\widehat{EKC}\left(=90\right)\)

\(\widehat{KEC}=\widehat{DBC}\) (\(\widehat{KEC}+\widehat{AED}=90;\widehat{DBC}+\widehat{DCB}=90;\widehat{DCB}=\widehat{AED}\))

\(\Rightarrow\Delta KEC~\Delta DBC\left(g.g\right)\Rightarrow\dfrac{S_{EKC}}{S_{BDC}}=\dfrac{EC^2}{BC^2}\left(7\right)\)

Từ (6) và (7) có:

\(\dfrac{S_{EKC}+S_{BHE}}{S_{BDC}}=\dfrac{BE^2+EC^2}{BC^2}=1\Leftrightarrow S_{EKC}+S_{BHE}=S_{BDC}\)

Thay vào biểu thức đầu bài:

\(S_{BHKC}=S_{BEC}+S_{BDC}\left(đpcm\right)\)

24 tháng 3 2017

để tối về mình lo nha giờ đi học