Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
\(\cfrac{P}{P-a}=\cfrac{2P}{2P-2a}=\cfrac{2P}{a+b+b-2a}=\cfrac{2P}{-a+b+c}\)
Chứng minh tương tự => \(\cfrac{P}{P-b}=\cfrac{2P}{a-b+c} \); \(\cfrac{P}{P-c}=\cfrac{2P}{a+b-c}\)
=>VT=\(\cfrac{2P}{-a+b+c}+\cfrac{2P}{a-b+c}+\cfrac{2P}{a+b-c} \geq 2P\cfrac{(1+1+1)^2}{a+b +c}=9\)(Áp dụng bđt \(\cfrac{a^2}{x}+\cfrac{b^2}{y}+\cfrac{c^c}{z}\geq\cfrac{(a+b+c)^2}{x+y+z}\))
............................
.........................???????/
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
- Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\left(1\right)\)
Ta biến đổi tương đương : \(\left(1\right)\Leftrightarrow p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)
\(\Leftrightarrow p< 3p-\left(a+b+c\right)+2\sqrt{p-a}.\sqrt{p-b}+2\sqrt{p-b}.\sqrt{p-c}+2\sqrt{p-c}.\sqrt{p-a}\)
\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)
- Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)
Áp dụng bđt Bunhiacopxki, ta có \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le\left(1^2+1^2+1^2\right)\left(3p-a-b-c\right)\)
\(\Leftrightarrow\left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\le3p\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)
Dấu "=" xảy ra khi a = b = c => Tam giác ABC là tam giác đều