\(\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{cos...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 2 2021

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

2 tháng 3 2021

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

1 tháng 7 2021

1.

\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)

\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)

\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)

\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)

\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)

Sao t lại đc như này v, ai check hộ phát

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:
Đặt \(\frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7}=k\Rightarrow \left\{\begin{matrix} a+b=6k\\ b+c=5k\\ c+a=7k\end{matrix}\right.(1)\)

\(\Rightarrow 2(a+b+c)=6k+5k+7k=18k\Rightarrow a+b+c=9k(2)\)

Từ \((1);(2) \Rightarrow \left\{\begin{matrix} c=3k\\ a=4k\\ b=2k\end{matrix}\right.\)

Theo định lý hàm số cos ta có:
\(a^2=b^2+c^2-2bc\cos A\)

\(\Rightarrow \cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{(2k)^2+(3k)^2-(4k)^2}{2.2k.3k}=\frac{-1}{4}\)

Tương tự: \(\cos B=\frac{c^2+a^2-b^2}{2ac}=\frac{7}{8}\)

\(\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{11}{16}\)

30 tháng 3 2017

Không mất tính tổng quát giả sử: \(A\ge B\ge C\). Khi đó \(A\ge\dfrac{\pi}{3};C\le\dfrac{\pi}{3}\)

\(\dfrac{\pi}{2}\ge A\ge\dfrac{\pi}{3}\)\(\pi\ge A+B=\pi-C\ge\dfrac{2\pi}{3}\) nên

\(\left\{{}\begin{matrix}\dfrac{\pi}{2}\ge A\ge\dfrac{\pi}{3}\\\dfrac{\pi}{2}+\dfrac{\pi}{2}\ge A+B\ge\dfrac{\pi}{3}+\dfrac{\pi}{3}\\\dfrac{\pi}{2}+\dfrac{\pi}{2}+0=A+B+C=\dfrac{\pi}{3}+\dfrac{\pi}{3}+\dfrac{\pi}{3}\end{matrix}\right.\)

Xét hàm số \(f\left(x\right)=\cos x\forall x\in\left[0;\dfrac{\pi}{2}\right]\)

Ta có: \(f"\left(x\right)=-\cos x< 0\forall x\in\left[0;\dfrac{\pi}{2}\right]\) nên hàm số \(f\left(x\right)\) lõm trên đoạn \(\left[0;\dfrac{\pi}{2}\right]\). Khi đó, theo BĐT Karamata ta có:

\(f\left(\dfrac{\pi}{2}\right)+f\left(\dfrac{\pi}{2}\right)+f\left(0\right)\le f\left(A\right)+f\left(B\right)+f\left(C\right)\le3f\left(\dfrac{\pi}{3}\right)\)

Hay \(\cos A+\cos B+\cos C\le\dfrac{3}{2}\)

NV
24 tháng 3 2021

\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}=\dfrac{a}{bc}\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{a}{bc}\)

\(\Leftrightarrow a^2+b^2+c^2=2a^2\)

\(\Leftrightarrow a^2=b^2+c^2\)

\(\Rightarrow\) Tam giác vuông tại A theo Pitago đảo

NV
31 tháng 1 2019

a/ \(b^2-c^2=ab.cosC-ac.cosB\)

Ta có: \(b.cosC-c.cosB=ab.\dfrac{a^2+b^2-c^2}{2ab}-ac.\dfrac{a^2+c^2-b^2}{2ac}\)

\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}=b^2-c^2\) (đpcm)

b/ \(ac.cosC-ab.cosB=ac.\dfrac{a^2+b^2-c^2}{2ab}-ab.\dfrac{a^2+c^2-b^2}{2ac}\)

\(=\dfrac{c^2\left(a^2+b^2-c^2\right)-b^2\left(a^2+c^2-b^2\right)}{2bc}=\dfrac{\left(ac\right)^2-\left(ab\right)^2+b^4-c^4}{2bc}\)

\(=\dfrac{-a^2\left(b^2-c^2\right)+\left(b^2-c^2\right)\left(b^2+c^2\right)}{2bc}=\left(b^2-c^2\right).\dfrac{\left(b^2+c^2-a^2\right)}{2bc}\)

\(=\left(b^2-c^2\right).cosA\) (đpcm)

c/ \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}=\dfrac{2R.cosA}{a}+\dfrac{2R.cosB}{b}+\dfrac{2R.cosC}{c}\)

\(=2R\left(\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\right)\)

\(=2R\left(\dfrac{a^2+b^2+c^2}{2abc}\right)=\dfrac{a^2+b^2+c^2}{abc}.R\) (đpcm)

31 tháng 1 2019

Cảm ơn bạn nhiều ạ ha

NV
15 tháng 6 2020

\(cosA+cosB-cosC=2cos\frac{A+B}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)-1\)

\(=4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}-1\)