Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình,mình giải)
a)xét 2 tam giác AMBvaf tam giác EMC có:
AM=ME(GT)
góc AMB=EMC(Đối đỉnh)
BM=MC(GT)
=> tam giác AMB=tam giác EMC(C.G.C)
=>BCE=ABC=90 độ (T.U)
b)Xét 2 tam giác BME và tam giác CMA có :
BM=MC (GT)
BME=CMA(đ.đ)
EM=MA(GT)
=>tam giac BME=tam giác CMA(c.g.c)
=>góc EBM=góc ACM(T.U)=>BE song song vs AC(vì có 2 góc so le trong bằng nhau,cái này ko viết cũng đc)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra; BE//AC
. A B C Ẻ M
a)Xét ΔAMB và ΔEMC CÓ:
AM=EM(gt)
\(\widehat{AMB}=\widehat{EMC}\left(đđ\right)\)
BM=MC(gt)
=> ΔAMB=ΔEMC(c.g.c)
=> \(\widehat{ABM}=\widehat{ECM}=90^o\)
Hay: \(\widehat{BCE}=90^o\)
b) Xét ΔAMC và ΔEMB có:
MC=MB(gt)
\(\widehat{AMC}=\widehat{EMB}\left(đđ\right)\)
AM=ME(gt)
=> ΔAMC=ΔEMB(c.g.c)
=> \(\widehat{MAC}=\widehat{MEB}\). Mà hai góc này ở vị trí siole trong
=> BE//AC
@phynit