Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
A B C M d
(Vẽ hình có thể chưa chuẩn xác!)
a) Có \(\Delta ABC\)vuông tại \(A\)có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2=25-9=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(cm\right)\)
Ta có: \(\widehat{ABC}+\widehat{BCA}=90\)độ ( Cùng phụ \(\widehat{BAC}\))
\(\Rightarrow50+\widehat{BCA}=90\Rightarrow\widehat{BCA}=90-50=40\left(cm\right)\)
b) Xét \(\Delta ABM\)và \(\Delta dCM\)(d nhỏ thì đúng hơn, với đề cho) có:
\(\widehat{BMA}=\widehat{dMC}\)(đối đỉnh)
\(BM=CM\)( vì \(M\)là trung điểm \(BC\))
\(\widehat{ABC}=\widehat{BCd}\)( So le trong, \(AB\)// \(Cd\))
\(\Rightarrow\Delta ABM=\Delta dCM\left(g.c.g\right)\)
\(\Rightarrow AB=dC\)(hai cạnh tương ứng)
Xét tứ giác \(ABCd\)có: \(AB=dC\left(cmt\right)\)và \(AB\)// \(dC\left(gt\right)\)
\(\Rightarrow\)Tứ giác \(ABCd\)là hình bình hành
\(\Rightarrow M\)là trung điểm \(Ad\)(tính chất 2 đường chéo trong hình bình hành)
\(\Rightarrow MA=Md\left(đpcm\right)\)
Ps: Check giùm coi có chỗ nào chưa good nha =))
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
B A C 5 30 30 D E Vẽ xấu nhưng xem tạm thôi nhé!
a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))
Ta có:BD là cạnh chung (1)
\(\widehat{ABD}=\widehat{EBD}\) (gt) (2)
Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)
b)..............hình như tôi ko bt nx ^^
Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa
a ) Phương Hoa lm rồi
b) Vì tam giác ABD = tam giác EBD ( câu a )
=> AB = EB ( cặp cạnh tượng ứng )
=> tam giác ABE cân (1)
Mà góc ABE = 60 độ (2)
Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )
c) Xét tam giác ABK và tam giác EBK có :
BD : cạnh chung
AB = BE ( vì tam giác ABE đều )
góc ABK = góc EBK = 30 độ ( vì BK là phân giác )
=> tam giác ABK = tam giác EBK ( c-g-c )
=> AK = EK ( cặp cạnh tương ứng )
Mà tam giác ABE đều => AB = EB = AE
=> AB = EB = AE = 5cm
mà AK + EK = AE
=> AK = AE = 2,5 cm
Mà AK = EC
=> AK = EC = 2,5cm
Vì BE + CE = BC
=> 5 + 2,5 = BC
=> BC = 7,5 cm
Chúc bn học tốt !!!
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
a) Xét tam giác ABC có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+50^o+40^o=180^o\)
\(\Rightarrow\widehat{A}+90^o=180^o\)
\(\Rightarrow\widehat{A}=90^o\)
-> Tam giác ABC vuông tại A
b) Xét tam giác ABC vuông tại A, có :
BC2=AB2+AC2
52=32+AC2
AC2=16
AC=4cm
Vậy : AC=4cm
#H