^B=2^C.Tia phân giac của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017


\(a.\) Ta có: \(\widehat{B}=2\widehat{C}\)suy ra \(\widehat{C}=\frac{\widehat{B}}{2}\)                                                    \(\left(1\right)\)
Vì \(BD\)là tia phân giác của \(\widehat{B}\)suy ra \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\)                \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{C}\)
- Xét \(\Delta ABD\)có     \(\widehat{ADB}+\widehat{DBA}+\widehat{BAD}=180^0\)(đ/lý tồng 3 góc trong cùng 1 tam giác)
                         \(\Rightarrow\)\(\widehat{ADB}+\widehat{BAD}=180^0-\widehat{DBA}\)
- Xét \(\Delta ABC\)có       \(\widehat{BAC}+\widehat{ACB}+\widehat{CBA}=180^0\)
                         \(\Rightarrow\) \(\widehat{BAC}+\widehat{CBA}=180^0-\widehat{ACB}\)
        mà  \(\widehat{ACB}=\widehat{ABD}\)(cmt)     suy ra  \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)

- Xet  \(\Delta ABD\)có  \(\widehat{ABE}\)là góc ngoài tại đỉnh \(B\)
                     suy ra  \(\widehat{ABE}=\widehat{ADB}+\widehat{BAD}\) 
- Xet  \(\Delta ABC\)có  \(\widehat{ACK}\)là góc ngoài tại đỉnh \(C\)
                     suy ra  \(\widehat{ACK}=\widehat{ABC}+\widehat{BAC}\) 
    mà    \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)        \(\Rightarrow\)đpcm

24 tháng 5 2017

\(b.\)  Xét  \(\Delta AEB\)và  \(\Delta KCA\) có:     \(AB=CK\)         ( gt )
                                                             \(\widehat{ABE}=\widehat{ACK}\)      ( cmt )
                                                                \(EB=AC\)          ( gt )
                   Do đó  \(\Delta AEB\)\(=\)\(\Delta KCA\) (c.g.c)

29 tháng 11 2017

Hình tự vẽ

Giải

Vì BD là tia p/giác \(\widehat{ABC}=>\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)\(\widehat{ACB}=\dfrac{\widehat{ABC}}{2}=>\widehat{ACB}=\widehat{ABD}=CBD\)

Ta có: \(\widehat{ACK}+\widehat{ACB}=\) 180* (2 góc kề bù)

\(\widehat{ABD}+\widehat{ABE}=\)180* (2 góc kề bù)

\(\widehat{ACB}=\widehat{ABD}\left(cmt\right)\)

=> \(\widehat{ACK}=\widehat{ABE}\)

Xét t/g ACK và t/g ABE có:

\(\widehat{ACK}=\widehat{EBA}\left(cmt\right)\)

CK = AB (gt)

BE = AC (gt)

Do đó: t/g ACK = t/g EBA (c-g-c)

=> AE = AK (2 cạnh t/ứng)

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

3 tháng 4 2020

Vì B là trung điểm của AE, B là trung điểm DC

=> AE và DC cắt nhau tại trung điểm mỗi đường

=> Tứ giác ACED là hình bình hành

Ta có: \(S_{ACED}=S_{ABC}+S_{BEC}+S_{BDE}+S_{ABD}\)

\(=\frac{1}{2}\cdot AB\cdot BC\cdot\sin\widehat{ABC}+\frac{1}{2}BE\cdot BC\cdot\sin\widehat{EBC}+\frac{1}{2}BE\cdot BD\cdot\sin\widehat{EBD}+\frac{1}{2}BD\cdot BA\cdot\sin\widehat{ABD}\)

\(=8\sqrt{3}\left(cm^2\right)\)