K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

hình tự vẽ nha bn

ta có MI//AC,M la tđ của BC=> I là tđ của AB 

         MK//AB,M la tđ của BC=> K là tđ của AC

tam giác ABM có N la tđ của AM,I là tđ cua AB=> IN la đtb của tam giác ABM=> NI//BM=> NI//BC(M thuộc BC) (1)

tương tự NK là đtb của tam giác AMC=> NK//MC=> NK//BC (M thuộc BC) (2)

từ (1),(2)=> NI và NK trùng nhau

=> 3 điểm I,N,K thẳng hàng

ta có MK//AI (MK//AB),IM//AK (IM//AC)=> tứ giác AKMI là hbh

tứ giác AKMI là hbh => 2 đg chéo IK và AM cắt nhau tại tđ mỗi đg

mà N là tđ của AM=> N là tđ của IK

a: Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MI//AC

Do đó: I là trung điểm của AB

Xét ΔBAC có

M,I lần lượt là trung điểm của BC,BA

=>MI là đường trung bình của ΔBAC

=>MI//AC và MI=AC/2

MI//AC

I\(\in\)MN

Do đó: MN//AC

Ta có: \(MI=\dfrac{AC}{2}\)

\(MI=\dfrac{MN}{2}\)

Do đó: MN=AC

Xét tứ giác ACMN có

MN//AC

MN=AC

Do đó: ACMN là hình bình hành

c: Xét ΔBAC có

M là trung điểm của CB

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

I,K lần lượt là trung điểm của AB,AC

=>IK là đường trung bình của ΔABC

=>IK//BC

=>IK//MQ

Ta có: ΔQAC vuông tại Q

mà QK là đường trung tuyến

nên \(QK=\dfrac{AC}{2}\)

mà MI=AC/2

nên QK=MI

Xét tứ giác MQIK có MQ//KI

nên MQIK là hình thang

Hình thang MQIK có MI=QK

nên MQIK là hình thang cân

9 tháng 11 2020

Qua N kẻ đường thẳng EF song song với BC (\(E\in AB,F\in AC\)), qua E kẻ đường thẳng song song với HK cắt AC tại G

Có: EF // BC (theo cách chọn hình phụ) nên theo định lý Thales, ta có: \(\frac{EN}{BM}=\frac{AN}{AM}=\frac{NF}{MC}\)

Mà BM = MC (do AM là trung tuyến) nên NE = NF

\(\Delta\)EFG có NK // EG (theo cách chọn hình phụ), N là trung điểm của EF (cmt) nên K là trung điểm của GF hay GK = KF (*)

Xét\(\Delta\)AHI và \(\Delta\)AKI có: ^AHI = ^AKI = 900 (gt); AI là cạnh chung; ^HAI = ^KAI (gt) nên \(\Delta\)AHI = \(\Delta\)AKI (ch - gn)

=> AH = AK (hai cạnh tương ứng)  hay \(\Delta\)AHK cân tại A lại có EG // HK nên \(\Delta\)AEG cũng cân tại A => AE = AG

=> AH - AE = AK - AG => HE = GK = KF (theo (*))

Xét \(\Delta\)IHE và \(\Delta\)IKF có: IH = IK (tính chất của điểm thuộc tia phân giác); ^IHE = ^IKF ( = 900); HE = KF (cmt) => \(\Delta\)IHE = \(\Delta\)IKF (c.g.c) => IE = IF (hai cạnh tương ứng) do đó \(\Delta\)IEF cân tại I có IN là trung tuyến nên cũng là đường cao

Ta có: NI\(\perp\)EF và EF // BC (theo cách vẽ hình phụ) nên NI \(\perp\)BC (đpcm)

9 tháng 11 2020

Câu hỏi của Phạm Thị Hằng - Toán lớp 8 - Học toán với OnlineMath

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

16 tháng 12 2023

a: Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{HAK}=90^0\)

=>AHMK là hình chữ nhật

=>AM=HK

b: Xét ΔABC có

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MH//AC

Do đó: H là trung điểm của AB

Xét ΔABC có

M,K lần lượt là trung điểm của CB,CA

=>MK là đường trung bình của ΔABC

=>MK//AB và \(MK=\dfrac{AB}{2}\)

Ta có: MK//AB

H\(\in\)AB

Do đó: MK//HB

Ta có: \(MK=\dfrac{AB}{2}\)

\(AH=HB=\dfrac{AB}{2}\)

Do đó: MK=AH=HB

Xét tứ giác BHKM có

BH//KM

BH=KM

Do đó: BHKM là hình bình hành

c: Gọi O là giao điểm của AM và KH

Ta có: AHMK là hình chữ nhật

=>AM cắt KH tại trung điểm của mỗi đường

=>O là trung điểm của AM và KH

=>\(OA=OM=\dfrac{AM}{2};OK=OH=\dfrac{KH}{2}\)

mà AM=KH

nên OA=OM=OK=OH(1)

Xét ΔAKM có

AF,KO là các đường trung tuyến

AF cắt KO tại D

Do đó: D là trọng tâm của ΔAKM

Xét ΔAKM có

D là trọng tâm

KO là đường trung tuyến

Do đó: \(KD=\dfrac{2}{3}KO\left(2\right)\)

Xét ΔHAM có

AE,HO là các đường trung tuyến

AE cắt HO tại I

Do đó: I là trọng tâm của ΔHAM

Xét ΔHAM có

HO là đường trung tuyến

I là trọng tâm

Do đó: \(HI=\dfrac{2}{3}HO\left(3\right)\)

Từ (1),(2),(3) suy ra HI=KD

loading...