Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có CA = CB nên cân tại C
Do đó CI vừa là đường cao vừa là trung tuyến
=> I là trung điểm AB
=> IA = IB
Vậy IA = IB
b) Ta có:
\(IA=\frac{1}{2}AB=\frac{1}{2}.12=6\left(cm\right)\)
\(\Rightarrow IA^2=6^2=36\left(cm\right)\)
Xét tam giác CIA vuông tại I có:
\(CI^2+IA^2=AC^2\)(Định lý Py-ta-go)
\(\Rightarrow IC^2+36=10^2=100\)
\(IC^2=100-36=64=8^2\)
Mà IC>0 nên IC =8
Vậy IC = 8cm
\(IC^2+\)
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: AB=12cm
nên IA=6cm
=>IC=8cm
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
H C K A B
a) Xét hai t/g vuông t/gACI và t/gBCI có CI chung
=>AC=BC(gt)
=>t/gACI=t/gBCI(ch-cgv)
=>IA=IB
=>đpcm
b)Xét 2 t/g vuông t/gIHA và t/gIKB
=>IA=IB
^A=^B(CA=CB=>t/gABCcân)
=>t/gIHA=t/gIKB (cgv-gnk)
=>IH=IK
=>đpcm
c)Ta có IA=IB=122=6(cm)
Áp dụng định lý Pytago vào t/gACI (^I=90o)
Ta có IA2+IC2=AC2 hay 62+IC2=102
=>IC2=102-62
=>IC2=64cm
=>IC=8cm
d)
Ta có t/gCHI=t/gCKI
=>CH=CK
=>CHK cân => gCHK=180o(1)
Mà t/gABC=gCAB(180-ABC/2) (2)
Từ (1) và (2) =>HK //AB.
a)+) tam giác ABC có CA=CB=10cm
=> tam giác ABC cân tại C
mà CI zuông góc AB ( AB cạnh huyền )
=> CI là đường tuyến ưng zs cạnh AB cũng như là đường trung trực ứng zs cạnh AB
=> \(IC=\frac{1}{2}AB\left(1\right)\)
\(AI=IB=\frac{1}{2}AB\left(2\right)\)
từ 1 zà 2
=> \(IC=IB=\frac{1}{2}AB=\frac{1}{2}12=6cm\)
b) xét tam giác zuông AHI zà tam giác zuông IKB có
AI=IB ( cmt)
góc HAI= góc KBI ( do tam giác ABC cân cmt)
=> tam giác AHI=IKB
=>IH=Ik
c) có thể đề sai , HK ko song song zs AC đc nha
a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB
CI chung
Do đó: ΔCIA=ΔCIB
=>IA=IB
b: Ta có: ΔCIA=ΔCIB
=>\(\widehat{ACI}=\widehat{BCI}\)
Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
=>IH=IK
c: Ta có: ΔCAI=ΔCBI
=>AI=BI
=>I là trung điểm của AB
=>\(AI=BI=\dfrac{AB}{2}=6\left(cm\right)\)
ΔCIA vuông tại I
=>\(CI^2+IA^2=CA^2\)
=>\(CI^2=10^2-6^2=64\)
=>\(CI=\sqrt{64}=8\left(cm\right)\)
d: ΔCHI=ΔCKI
=>CH=CK
Xét ΔCAB có \(\dfrac{CH}{CA}=\dfrac{CK}{CB}\)
nên HK//AB