K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có

CA=CB

CI chung

Do đó: ΔCIA=ΔCIB

=>IA=IB

b: Ta có: ΔCIA=ΔCIB

=>\(\widehat{ACI}=\widehat{BCI}\)

Xét ΔCHI vuông tại H và ΔCKI vuông tại K có

CI chung

\(\widehat{HCI}=\widehat{KCI}\)

Do đó: ΔCHI=ΔCKI

=>IH=IK

c: Ta có: ΔCAI=ΔCBI

=>AI=BI

=>I là trung điểm của AB

=>\(AI=BI=\dfrac{AB}{2}=6\left(cm\right)\)

ΔCIA vuông tại I

=>\(CI^2+IA^2=CA^2\)

=>\(CI^2=10^2-6^2=64\)

=>\(CI=\sqrt{64}=8\left(cm\right)\)

d: ΔCHI=ΔCKI

=>CH=CK

Xét ΔCAB có \(\dfrac{CH}{CA}=\dfrac{CK}{CB}\)

nên HK//AB

18 tháng 4 2016

a) Xét tam giác ABC có CA = CB nên cân tại C

Do đó CI vừa là đường cao vừa là trung tuyến

=> I là trung điểm AB

=> IA = IB

Vậy IA = IB

18 tháng 4 2016

b) Ta có:

\(IA=\frac{1}{2}AB=\frac{1}{2}.12=6\left(cm\right)\)

\(\Rightarrow IA^2=6^2=36\left(cm\right)\)

Xét tam giác CIA vuông tại I có:

\(CI^2+IA^2=AC^2\)(Định lý Py-ta-go)

\(\Rightarrow IC^2+36=10^2=100\)

\(IC^2=100-36=64=8^2\)

Mà IC>0 nên IC =8

Vậy IC = 8cm

\(IC^2+\)

a: Ta có: ΔCAB cân tại C

mà CI là đường cao

nên I là trung điểm của AB

hay IA=IB

b: AB=12cm

nên IA=6cm

=>IC=8cm

c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có

CI chung

\(\widehat{HCI}=\widehat{KCI}\)

Do đó: ΔCHI=ΔCKI

Suy ra: IH=IK

21 tháng 6 2022

Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`

hay góc HAIHAI=góc KBIKBI

Xét Δ vuông IHAIHA và Δ IKBIKB có:

IA=IBIA=IB (chứng minh trên)

góc HAIHAI=góc KBIKBI

Góc AHI=BKI=90o90o

⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)

IH=IKIH=IK (hai cạnh tương ứng bằng nhau)

image

19 tháng 4 2016

a)

xét tam giác ACI vàBCI có:

CA=CB

CI(chung)

=> tam giác ACI=BCI(CH-CGV)

suy ra IB=IA

19 tháng 4 2016

k cho mình thì mình mới làm

10 tháng 5 2019

C A B I

a) Xét \(\Delta ACI=\Delta BCI\)ta có:

         \(AC=CB\left(gt\right)\)

         \(\widehat{AIC}=\widehat{BIC}=90^o\)

          \(CI\)chung

\(\Rightarrow\Delta ACI=\Delta BCI\left(c.g.c\right)\)

\(\Rightarrow IA=IB\)(2 cạnh tương ứng)

Vậy IA = IB

21 tháng 2 2020

H C K A B

a) Xét hai t/g vuông t/gACI và t/gBCI có CI chung

=>AC=BC(gt)

=>t/gACI=t/gBCI(ch-cgv)

=>IA=IB

=>đpcm

b)Xét 2 t/g vuông t/gIHA và t/gIKB

=>IA=IB

^A=^B(CA=CB=>t/gABCcân)

=>t/gIHA=t/gIKB (cgv-gnk)

=>IH=IK

=>đpcm

c)Ta có IA=IB=122=6(cm)

Áp dụng định lý Pytago vào t/gACI (^I=90o)

Ta có IA2+IC2=AC2 hay 62+IC2=102

=>IC2=102-62

=>IC2=64cm

=>IC=8cm

d)

Ta có t/gCHI=t/gCKI

=>CH=CK

=>CHK cân => gCHK=180o(1)

Mà t/gABC=gCAB(180-ABC/2) (2)

Từ (1) và (2) =>HK //AB.

14 tháng 3 2020

a)+) tam giác ABC có CA=CB=10cm

=> tam giác ABC cân tại C

mà CI zuông góc AB ( AB cạnh huyền )

=> CI  là đường tuyến ưng zs cạnh AB cũng như là đường trung trực ứng zs cạnh AB

=> \(IC=\frac{1}{2}AB\left(1\right)\)

   \(AI=IB=\frac{1}{2}AB\left(2\right)\)

từ 1 zà 2 

=> \(IC=IB=\frac{1}{2}AB=\frac{1}{2}12=6cm\)

b) xét tam giác zuông AHI zà tam giác zuông IKB có

AI=IB ( cmt)

góc HAI= góc KBI ( do tam giác ABC cân cmt)

=> tam giác AHI=IKB

=>IH=Ik

c) có thể đề sai , HK ko song song zs AC đc nha