Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H C K A B
a) Xét hai t/g vuông t/gACI và t/gBCI có CI chung
=>AC=BC(gt)
=>t/gACI=t/gBCI(ch-cgv)
=>IA=IB
=>đpcm
b)Xét 2 t/g vuông t/gIHA và t/gIKB
=>IA=IB
^A=^B(CA=CB=>t/gABCcân)
=>t/gIHA=t/gIKB (cgv-gnk)
=>IH=IK
=>đpcm
c)Ta có IA=IB=122=6(cm)
Áp dụng định lý Pytago vào t/gACI (^I=90o)
Ta có IA2+IC2=AC2 hay 62+IC2=102
=>IC2=102-62
=>IC2=64cm
=>IC=8cm
d)
Ta có t/gCHI=t/gCKI
=>CH=CK
=>CHK cân => gCHK=180o(1)
Mà t/gABC=gCAB(180-ABC/2) (2)
Từ (1) và (2) =>HK //AB.
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
a)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=\(\sqrt{64}\)=8(cm)
c0 Tam giác ABC cân tại góc A
=>Góc C1=góc C2
Xét hai tam giác vuông CIK và CIA, ta có:
GócC1=góc C2(cmt)
IC: cạnh chung
=>tam giácCIK= tam giác CIH (cạnh huyền_góc nhọn)
=>IH=IK (hai cạnh tương ứng)
thanh thảo trả lời sai rồi
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
THẾ MÀ CÓ 6 NGƯỜI BẢO LÀ ĐÚNG
a)
Xét ΔACIΔACI và ΔBCIΔBCI, có:
AICˆ=BICˆ=900AIC^=BIC^=900
CA=CBCA=CB (Tam giác ABC cân tại C)
CABˆ=CBAˆCAB^=CBA^ (Tam giác ABC cân tại C)
⇒ΔACI=ΔBCI⇒ΔACI=ΔBCI (cạnh huyền_góc nhọn)
⇒IA=IB⇒IA=IB (Hai cạnh tương ứng)
⇔⇔ I là trung điểm của AB
⇔IA=IB=AB2=122=6(cm)⇔IA=IB=AB2=122=6(cm)
Áp dụng định lý Pitago vào tam giác ABI, có:
AC2=IA2+CI2AC2=IA2+CI2
Hay 102=62+CI2102=62+CI2
⇒CI2=102−62=64⇒CI2=102−62=64
⇒CI=64−−√=8⇒CI=64=8
b)
Xét ΔAHIΔAHI và ΔBKIΔBKI, có:
AHIˆ=BKIˆ=900AHI^=BKI^=900
IA=IBIA=IB (I là trung điểm của AB)
CABˆ=CBAˆCAB^=CBA^ (Tam giác ABC cân tại C)
⇒ΔAHI=ΔBKI⇒ΔAHI=ΔBKI (cạnh huyền_góc nhọn)
⇒IH=IK⇒IH=IK (Hai cạnh tương ứng)
⇒đpcm⇒đpcm
c)
Xét ΔCHIΔCHI và ΔCKIΔCKI, có:
CHIˆ=CKIˆ=900CHI^=CKI^=900
CI là cạnh chung
HCIˆ=KCIˆHCI^=KCI^ (ΔACI=ΔBCIΔACI=ΔBCI)
⇒ΔCHI=ΔBKI⇒ΔCHI=ΔBKI (cạnh huyền_góc nhọn)
⇒CH=CK⇒CH=CK (Hai cạnh tương ứng)
⇒ΔCHK⇒ΔCHK cân tại A (Kẻ HK)
⇒CHK=1800−ACBˆ2⇒CHK=1800−ACB^2 (1)
Lại có: ΔABCΔABC cân tại C
⇒CABˆ=1800−ACBˆ2⇒CAB^=1800−ACB^2 (2)
Từ (1) và (2) ⇒CHKˆ=CABˆ⇒CHK^=CAB^
⇔⇔ HK song song với AB (Vì có hai góc đồng vị bằng nhau)
a)+) tam giác ABC có CA=CB=10cm
=> tam giác ABC cân tại C
mà CI zuông góc AB ( AB cạnh huyền )
=> CI là đường tuyến ưng zs cạnh AB cũng như là đường trung trực ứng zs cạnh AB
=> \(IC=\frac{1}{2}AB\left(1\right)\)
\(AI=IB=\frac{1}{2}AB\left(2\right)\)
từ 1 zà 2
=> \(IC=IB=\frac{1}{2}AB=\frac{1}{2}12=6cm\)
b) xét tam giác zuông AHI zà tam giác zuông IKB có
AI=IB ( cmt)
góc HAI= góc KBI ( do tam giác ABC cân cmt)
=> tam giác AHI=IKB
=>IH=Ik
c) có thể đề sai , HK ko song song zs AC đc nha
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: AB=12cm
nên IA=6cm
=>IC=8cm
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)