\(a^2+b^2>5c^2\) Chứng minh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

==" nâng cao và phát triển 7 có chú oi

16 tháng 12 2017

a viết đi.ko thì cho link đi :V

6 tháng 4 2019

Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)

 \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\)

\(\Rightarrow b^2>4a^2\)

\(\Rightarrow b>2a\)   (1)

           \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)

                              \(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\)         (2)

Cộng (1) và (2) ta được:

  \(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )

\(\Rightarrow c< a\)

 Chứng minh tương tự :  \(c< b\)

Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)

\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)

\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}< 60^o\) (đpcm)

6 tháng 4 2019

cảm ơn bn nha!

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...

27 tháng 8 2016

a) 

C < 60 vì A + B + C = A + 3C ( VÌ B = 2C ) 

mà C = 60 =) A + 180 = 180 

=) A = 0 

Vậy C < 60 để A thõa mãn 

Vậy C < 60 

27 tháng 8 2016

Muon 

tam giác ABC là tam giác nhọn 

=) C < 90 độ 

=) C + B < 180 độ 

=) 3C < 180 độ 

=) C < 60 độ 

Vậy C < 60 độ để tam giác ABC là tam giác nhọn

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0
28 tháng 2 2018

làm câu a thôi nha

A B C H K

a) trên tia HB lấy HK sao cho HK = HC  

xét tam giác ACH và tam giác AKH có :

AH ( cạnh chung )

\(\widehat{AHC}=\widehat{AHK}=90^o\)

HC = HK ( theo cách vẽ )

suy ra : tam giác ACH = tam giác AKH ( c.g.c )

=> HC = HK ( hai cạnh tương ứng )

=> \(\widehat{C}=\widehat{AKH}\)( hai góc tương ứng )

=> AC = AK ( hai cạnh tương ứng )

tam giác AKB có \(\widehat{AKH}\)là góc ngoài tại đỉnh K có :

\(\widehat{AKH}\)\(\widehat{KAB}+\widehat{B}\)

Mà \(\widehat{C}=2.\widehat{B}\)hay \(\widehat{AKH}\)\(2.\widehat{B}\)

\(\Rightarrow2.\widehat{B}=\widehat{KAB}+\widehat{B}\)

\(\Rightarrow\widehat{KAB}=\widehat{B}\)

=> tam giác KAB cân tại K 

=> KA = KB 

=> AC + CH = KB + HK = BH

b) 

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD