K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

24 tháng 6 2017

gọi D là tiếp điểm của đường tròn (K) trên BC . ta có DB = BE ; CD = CF (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) AE = AB + BE = c + BD

AF = AC + CF = b + CD

\(\Rightarrow\) AE + AF = b + c + (BD + CD)

= a + b + c

ta lại có AE = AF (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) AE = AF = \(\dfrac{a+b+c}{2}\) (đpcm)

b) BE = AE - AB = \(\dfrac{a+b+c}{2}\) - c = \(\dfrac{a+b-c}{2}\) (đpcm)

c) CF = AF - AC = \(\dfrac{a+b+c}{2}\) -b = \(\dfrac{a+c-b}{2}\) (đpcm)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

27 tháng 5 2021

a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.

b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).

Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).

c) Gọi P' là trung điểm của MC.

Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.

Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.

Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.

14 tháng 10 2017

Sách bài tập lớp 9 ak

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

20 tháng 5 2019

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
9 tháng 2 2017

(Bởi vì CM trực tiếp hơi khó nên mình CM bằng trùng hình)

Vẽ \(AM\) là trung tuyến của tam giác \(ABC\) và tia \(AE\) thoả \(\widehat{BAE}=\widehat{CAM}\) (trong đó \(E\in\left(O\right)\)). Gọi \(D',N\) lần lượt là trung điểm của \(AE,AC\).

-----

Bước 1: CM: \(\widehat{AD'O}=90^o\) (hiển nhiên).

Bước 2: CM \(D\) trùng với \(D'\).

Tam giác \(ABE\) và \(AMC\) đồng dạng (g.g) nên tam giác phân bởi đường trung tuyến cũng đồng dạng.

Cụ thể là tam giác \(ABD'\) và \(AMN\) đồng dạng.

Suy ra \(\widehat{ABD'}=\widehat{AMN}=\widehat{BAM}\) (so le trong, \(MN\) song song \(AB\)).

Mà \(\widehat{BAM}=\widehat{EAC}\) nên \(\widehat{ABD'}=\widehat{D'AC}\).

Từ đó suy ra \(AC\) tiếp xúc với đường tròn ngoại tiếp \(ABD'\).

Tương tự suy ra  \(AB\) tiếp xúc với đường tròn ngoại tiếp \(ACD'\).

Vậy \(D\) trùng với \(D'\) và ta có đpcm.