Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
B A C
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
a) Vẽ OK là tia phân giác của góc BOC
Ta có : ∠ BOC = 180o - ( ∠ OBC + ∠OCB )
Mà ∠OBC = 1212. ∠ABC
∠OCB = 1212.∠ACB
=> ∠BOC = 180o-1/2x(∠ABC + ∠ ACB )
Mặt khác , ∠ABC + ∠ACB = 180o - ∠A = 180 o - 60o = 120o
=> ∠BOC = 180o- 1212. 120o = 120o
Ta có : ∠EOB + ∠BOC = 180o ( 2 góc kề bù )
=>∠EOB = 180o - 120o = 60o (1)
∠DOC + ∠BOC = 180o (2 góc kề bù )
=> ∠DOC = 180o - 120o = 60o (2)
Từ (1) và (2) => ∠EOB = ∠DOC (= 60o) ( 3)
Vì OK là tia phân giác của góc BOC nên ∠BOK = ∠COK = 1/2x 120o = 60o (4)
Từ (3) và (4) => ∠BOK = ∠ COK = ∠EOB =∠DOC
Xét ΔEOB và Δ KOB có :
OB : cạnh chung
∠EBO = ∠OBK ( gt)
∠EOB = ∠BOK (cmt)
=> ΔEOB = Δ KOB(g - c - g)
=> OE = OK ( 2 cạnh tương ứng) (5)
Xét ΔDOC và ΔKOC có :
OC : cạnh chung
∠KCO = ∠OCD ( gt)
∠KOC = ∠COD ( cmt)
=> ΔDOC = ΔKOC ( g - c - g)
=> OK = OD( 2 cạnh t/ứng) (6)
Từ (5) và (6) => OD = OE ( = OK)
Xét ΔDOE có OD = OE nên ΔDOE cân tại O
b)Vì ΔEOB = Δ KOB (cm câu a)
=> BE = BK ( 2 cạnh t/ứng)
Vì ΔDOC = ΔKOC ( cm câu a)
=> CD = CK ( 2 cạnh t/ứng )
Ta có : BE = BK (cmt)
CD = CK (cmt)
=> BE + CD = BK + CK = BC ( đpcm)
cai so 1212 do bi loi nen ban phai doi thanh \(\frac{1}{2}\)cho mk nha
dau cham la dau nhan
Xét tam giác ABC
có ^A+^B+^C=180
Thay 60+^b+50=180
=>^B=180-60-50=70 độ
Xét tam giác ABD có
^A+^D+^B=180
THAY 60+d+70:2=180
=>d= 85
tìm cdb tương tự
mk k vẽ hình nữa nha bn!!!
Bài 1:
a/ Xét ΔABC và ΔACE có:
\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)
AC: Cạnh chung
\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> \(\widehat{ABC}=\widehat{ACB}\) = 50o
=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)
Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)
= 80o + 50o = 130o
Bài 1:
a/ Xét ΔABC và ΔACE có:
BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)
AC: Cạnh chung
BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> ABCˆ=ACBˆABC^=ACB^ = 50o
=> BACˆ=180o−Bˆ−Cˆ=180o−50o−50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)
Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)
= 80o + 50o = 130o
AB =BC => tam giác ABC cân tại B
\(\Rightarrow\widehat{A}=\widehat{C}\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow2\widehat{A}+50^{^0}=180^0\)
\(\Rightarrow\widehat{A}=\widehat{C}=65^0\)