Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác ABM = DCM( c-g-c ) (*)
=) * góc BAD = góc ADC
=) AB // CD
* AB = DC ( 1 )
xét tam giác ABH= EBH ( c-g-c )
=) AB = BE ( 2 )
từ (1) và (2)=) CD=BE
b) ( đề sai, phải là CD vuông góc AC mới đúng )
từ (*) =) góc ABM = DCM
mà tg ABC vuông tại A=) ABM+ACB=90 độ
suy ra góc DCM+ACB=90 độ
=) CD vuông góc vs AC
c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC
d) Do AM = 1/2BC
=) BC = 10cm
áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:
AB^2 + AC^2 = BC^2
AB^2 = 36
AB = 6cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác AMB và tam giác NMC có :
AM = MN do N là trđ của AM (gt)
MB = MC do M là trđ của BC (Gt)
góc BMN = góc CMA (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Tính độ dài BC.
b) Chứng minh AB = CD, AB // CD.
c) Chứng minh góc BAM > góc CAM.
d)gọi H là trung điểm của BM trên đường thẳng AH lấy E sao cho AH=HE,CE cắt AD tại F.Chứng minh F là trung điểm của CE
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H E D M S N K I
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
a) Xét ΔABM và ΔDCM có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔABM=ΔDCM(c-g-c)
Suy ra: AB=DC(hai cạnh tương ứng)
Ta có: ΔABM=ΔDCM(cmt)
nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔAHM vuông tại H và ΔDKM vuông tại K có
MA=MD(gt)
\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)
Do đó: ΔAHM=ΔDKM(cạnh huyền-góc nhọn)
Suy ra: AH=DK(hai cạnh tương ứng)
c)
Ta có: MA=MD(gt)
mà A,M,D thẳng hàng(gt)
nên M là trung điểm của AD
Xét ΔAND có
H là trung điểm của AN(gt)
M là trung điểm của AD(cmt)
Do đó: HM là đường trung bình của ΔAND(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow\)HM//ND và \(HM=\dfrac{ND}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: HM//ND(cmt)
mà \(B\in HM\)(gt)
và \(C\in HM\)(gt)
nên ND//BC(đpcm)
d) Xét ΔAHK vuông tại H có AK là cạnh huyền(AK là cạnh đối diện với góc vuông AHK)
nên AK là cạnh lớn nhất trong ΔAHK(Định lí)
hay AK>AH
mà AH=HN(H là trung điểm của AN)
nên AK>HN(đpcm)