Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
a) \(AB< AC\Rightarrow\widehat{ACB}< \widehat{ABC}\Leftrightarrow\widehat{BCD}< \widehat{CAD}\)
(vì \(\widehat{ACB}+\widehat{CAD}=\widehat{ABC}+\widehat{DAB}=90^o\))
b) Dễ dàng chứng minh được \(\Delta CDA=\Delta CEB\left(g.c.g\right)\)
suy ra \(CA=CB\)(hai cạnh tương ứng)
do đó tam giác \(ABC\)cân tại \(C\).
c) \(H\)là giao hai đường cao của tam giác \(ABC\)nên \(H\)là trực tâm tam giác \(ABC\)nên \(CH\perp AB\).
Mà tam giác \(ABC\)cân tại \(C\)nên \(CH\)là đường cao đồng thời cũng là đường trung trực của \(AB\).
d) \(\Delta CDA=\Delta CEB\Rightarrow CD=CE\Rightarrow\Delta CDE\)cân tại \(C\).
Do đó \(\widehat{CDE}=\frac{180^o-\widehat{ECD}}{2}\).
Tương tự cũng có \(\widehat{ABC}=\frac{180^o-\widehat{ACB}}{2}\)
suy ra \(\widehat{CDE}=\widehat{ABC}\)mà hai góc này ở vị trí trong cùng phía nên \(DE//BA\).
Answer:
Bài 1:
Vì AB = AC nên tam giác ABC cân tại A
=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ
Ta gọi DF là trung trực của AC
=> DF vuông góc AC = F; FC = FA
Mà DF là trung trực của AC
=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ
Xét tam giác ACE và tam giác BAD:
BD = AE
AC = AB
Góc EAC = góc DBA = 30 độ
=> Tam giác ACE = tam giác BAD (c.g.c)
=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ
Bài 2:
Có: IK là trung trực của BC
=> IB = IC
Tương tự ID = IA mà AB = CD
=> Tam giác IAB = tam giác IDC (c.c.c)
=> Góc IAB = góc IDA = góc IAC
=> AI là tia phân giác của góc BAD
Mà AI là tia phân giác của góc A
IE vuông góc AB; IH vuông góc AC
=> IE = IH
\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)
=> BE = HC
Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH
=> Tam giác AEI = tam giác AHI (g.c.g)
=> AE = AH mà IE = IH
=> IA là trung trực của EH
Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC
=> Tam giác CHF cân ở C
=> CF = CH
=> CF = BE
Mà KB = KC; góc EBK = góc KCF
=> Tam giác BKE = tam giác CKF (c.g.c)
=> Góc BKE = góc FKC
=> E, F, K thẳng hàng
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Trl:
a) Vì I thuộc đường trung trực của BC và AD(gt))
=> IB=IC và IA=ID (theo định lí đường trung trực).
Xét 2 ΔAIB và DIC có:
AI=DI(cmt)
AB=DC(gt)
IB=IC(cmt)
=> ΔAIB=ΔDIC(c−c−c).
b) Theo câu a) ta có ΔAIB=ΔDIC
=> BAIˆ=CDIˆ (2 góc tương ứng).
Xét ΔADIcó:
IA=ID(cmt)
=> ΔADI cân tại I.
=> ADIˆ=DAIˆ(tính chất tam giác cân).
Hay CDIˆ=CAIˆ.
Mà BAIˆ=CDIˆ(cmt)
=> BAIˆ=CAIˆ
=> AI là tia phân giác của BACˆ.
~Học tốt!~