Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>AE=DE
b: Xét ΔEAI vuông tại A và ΔEDC vuông tại D có
EA=ED
góc AEI=góc DEC
=>ΔEAI=ΔEDC
c: BI=BC
EI=EC
=>BE là trung trực của CI
=>BE vuông góc CI
tự vẽ hình
a, Xét △ABC vuông tại A có: ∠B + ∠C = 90o (tổng 2 góc nhọn trong tam giác vuông) (1)
Xét △DEC vuông tại D có: ∠C + ∠DEC = 90o (tổng 2 góc nhọn trong tam giác vuông) (2)
Từ (1) và (2) => ∠B = ∠DEC
b, Xét △EAD và △FAD
Có: EA = FA (gt)
∠EAD = ∠FAD (gt)
AD là cạnh chung
=> △EAD = △FAD (c.g.c)
=> ∠AED = ∠AFD (2 góc tương ứng) (3)
Ta có: ∠AED + ∠DEC = 180o (2 góc kề bù) (4)
∠AFD + ∠DFB = 180o (2 góc kề bù) (5)
Từ (3), (4) và (5)
=> ∠DEC = ∠DFB
Mà ∠DEC = ∠B (cmt)
=> ∠DFB = ∠B
Xét △DFB có: ∠DFB = ∠B
=> △DFB cân tại D
c, Vì △DFB cân tại D (cmt)
=> DF = DB (2 cạnh tương ứng)
Mà DF = ED (△EAD = △FAD)
=> DB = DE (ddpcm)
a) Xét ∆BAD và ∆EAD có :
AD chung
AB = AE
BAD = CAD (AD là phân giác)
=> ∆BAD = ∆EAD (c.g.c)
=> BD = DE
bl Vì BD = DE
=> ∆BDE cân tại D
=> DBE = DEB
Vì AB = AE (gt)
=> ∆ABE cân tại A
=> ABE = AEB
=> ABE + EBC = AEB + BED = ABD = AED
Mà ABD + DBF = 180° ( kề bù )
AED + DEC = 180° ( kề bù )
Mà ABD = AED (cmt)
=> DBF = DEC
Xét ∆BDF và ∆EDC có :
BD = DE
BDF = EDC ( đối đỉnh )
DBF = DEC ( cmt)
=> ∆BDF = ∆EDC (g.c.g)
Mik sửa đề nha. vì đề bài cho mik k vẽ được.
" Cho tam giác ABC có AB<AC,AD là đường phân giác (D thuộc BC). trên cạnh AC lấy điểm E sao cho AB=AE. đường thẳng DE cắt đường thẳng AB tại K
CMR: a) DB = DE
b) AK = AC
c) GÓC DEC > GÓC ACB
A B C D E K
Làm
a) Xét tam giác ADB và tam giác ADE có:
AB = AE ( gt )
\(\widehat{BAD}=\widehat{EAD}\)( AD là tia phân giác góc A )
AD chung.
=> Tam giác ADB = tam giác ADE ( c.g.c )
=> BD = DE ( hai cạnh tương ứng )
b) Vì tam giác ADB = tam giác ADE ( cmt )
=> \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBK}=180^0\)( hai góc kề bù )
\(\widehat{AED}+\widehat{DEC}=180^0\)
Mà \(\widehat{ABD}=\widehat{AED}\)
=> \(\widehat{DBK}=\widehat{DEC}\)
Xét tam giác BDK và tam giác EDC có:
\(\widehat{DBK}=\widehat{DEC}\)( cmt )
BD = DE ( cmt )
\(\widehat{BDK}=\widehat{EDC}\)
=> Tam giác BDK = tam giác EDC ( g.c.g )
=> BK = EC
Ta có: AB + BK = AK
AE + EC = AC
=> Mà: AB = AE
BK = EC
=> AK = AC.
câu c kiểu j ý
# Học tốt#