Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông:
$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm)
$CH=BC-BH=5-1,8=3,2$ (cm)
$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$
$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$
Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)
$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)
$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{4.8^2}{3.6}=6.4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=36\\AC^2=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC=căn 3^2+4^2=5cm
ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC; BH*BC=BA^2; CH*CB=CA^2
=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm; CH=4^2/5=3,2cm
ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)
\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)
b: Xét ΔABC có BD là đường phân giác
nên AD/AB=CD/BC
=>AD/12=CD/14
=>AD/6=CD/7
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)
Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)
a)Xét tam giác abc vuông tại a
Ta có : bc² = ab² + ac² ( py-ta-go )
=> bc² = 6² + 8² = 100
=> bc = 10 (cm )
b) Áp dụng hệ thức lượng cho tam giác abc vuông tại a đường cao ah
Ta có : ab² = bh.bc ( bình phương cgv = tích chiếu huyền )
c) ta có ab² = bh.bc ( từ b )
=> bh = ab²/bc = 6²/10 = 3,6 (cm)
Xét tam giác abc, đường phân giác ad
Ta có ab/ac = db/dc
=> 6/(8+6) = db/(dc+db)
=> 6/14 = db/10
=> db = 6/14 .10 = 60/14 = 30/7 (cm)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)