Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a. Xét \(\Delta ABD\)và \(\Delta ECD\)có:
AD=ED( giả thiết)
\(\widehat{ADB}=\widehat{EDC}\) ( đối đỉnh)
BD = CD ( vì AD là đường trung tuyến)
=> \(\Delta ABD=\Delta ECD\left(c.g.c\right)\)
b. Ta có: \(\Delta ABD=\Delta ECD\)
=> AB = EC ( 2 cạnh tương ứng)
Mà AB < AC => EC < AC ( đpcm )
c. Vì EC < AC \(\Rightarrow\widehat{CAE}< \widehat{CEA}\) hay \(\widehat{DAC}< \widehat{CED}\)
Mà \(\widehat{DAB}=\widehat{CED}\) ( vì \(\Delta ABD=\Delta ECD\))
\(\Rightarrow\widehat{DAB}>\widehat{DAC}\)(đpcm)
A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)
Trên tia AB lấy điểm N sao cho AN=AC. Do AB>AC nên N nằm giữa A và B
Vậy AB - AC = AB - AN = BN
dễ dàng chứng minh đc tam giác AEN = tam giác AEC (cgc), suy ra EN = EC (2 cạnh tương ứng)
Xét tam giác EBN có: BN > EB - EN (hệ quả của bất đẳng thức trong tam giác)
mà BN = AB - AC ( đã chứng minh)
=> AB - AC > EB - EN
lại có EN = EC (đã chứng minh), suy ra AB - AC > EB - EC ( đpcm)
ko tránh khỏi thiếu sót, nếu sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
A M E B D C
a) Vì \(\widehat{ACE}\) và \(\widehat{BAC}\) là hai góc so le trong
=> \(AB//CE\) ( tính chất hai đường thẳng song song )
b) Vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}\)
Vì CM là tia phân giác của \(\widehat{ACE}\Rightarrow\widehat{ACM}=\widehat{MCE}\)
Ta có : \(\widehat{ACE}=\widehat{BAC}\) ( so le trong )
=>\(\dfrac{1}{2}\widehat{ACE}=\dfrac{1}{2}\widehat{BAC}\)
hay \(\widehat{DAC}=\widehat{ACM}\)
Mà hai góc này nằm ở vị trí so le trong \(\Rightarrow AD//CM\)
a. Ta có: \(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)
Mà hai góc này ở vị trí số le trong
\(\Rightarrow AB//CE\)
b. Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{1}{2}\widehat{BAC}\) (AD là phân giác của \(\widehat{BAC}\))
\(\widehat{ACM}=\widehat{MCE}=\dfrac{1}{2}\widehat{ACE}\) (CM là phân giác của \(\widehat{ACE}\) )
Mà \(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)
\(\Rightarrow\widehat{CAD}=\widehat{ACM}\) mà hai góc này ở vị trí so le trong
\(\Rightarrow AD//CM\)
B C A M E
a) Xét \(\Delta ABM\) và \(\Delta ECM\), có:
MB=MC(AM là đường trung tuyến )
\(\widehat{ABM}=\widehat{EMC}\)( 2 góc đối đỉnh )
MA=ME(gt)
\(\Rightarrow\Delta ABM=\Delta EMC\left(c-g-c\right)\\ \)
b) Vì \(\Delta ABM=\Delta EMC\)
\(\Rightarrow AB=EC\)
Vì \(\Delta ABC\) có \(\widehat{B}=90^0\) nên \(\widehat{B}>\widehat{C}\\ \)
\(\Rightarrow AC>AB\)
Mà AB=EC \(\Rightarrow\) AC>CE
c) Vì \(\Delta ABM=\Delta ECM\\ \)
\(\Rightarrow\widehat{ABM}=\widehat{ECM}\\ \Rightarrow\widehat{ECM}=90^0\\ \)
\(\Rightarrow\) EC vuông góc BC
Xét tam giác ADE và ABC có
A : góc chung
D = B (đồng vị)
E = C (đồng vị)
Ta có: Dx // BC mà D là trung điểm của AB
=> E là trung điểm của AC
=> AE = EC (đpcm)
Ta có hình vẽ: A B D C 1 2 E 1 2 1
a) Xét 2 tam giác ABD và tam giác ECD có:
AD = ED (gt)
BD = CD (gt)
góc D1 = góc D2 (đối đỉnh)
=> tam giác ABD = tam giác ECD (c-g-c)
b) CM EC > AC, chứ k pải CM EC < AC đâu bn nhé! ^^
Ta có: AB = EC (vì tam giác ABD = tam giác ECD)
AB > AC (gt)
=> EC > AC
c) Ta có: đối diên với góc A2 là cạnh EC
đối diện với góc E2 là cạnh AC
mà EC > AC (cmt)
=> góc E2 > góc A2
mặt khác Góc E2 = góc A1 (vì tam giác ABD = tam giác ECD)
=> góc A1 > A2