K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

A B C D M

a) Vì tam giác ABC cân tại A => Tia p/g AD cũng là đường trung tuyến

=> BD=CD (đpcm)

b) Xét \(\Delta ABMvà\Delta ACM\)

Có \(\widehat{BAM}=\widehat{CAM}\left(gt\right)\)

\(AB=AC\left(gt\right)\)

AM chung

=> \(\Delta ABM=\Delta ACM\left(cgc\right)\)

c)Vì tam giác ABC cân tại A => Tia p/g AD cũng là đường cao

=>\(\widehat{MDB}=\widehat{MDC}=90^o\)

Xét \(\Delta BMD\text{ và}\Delta CMD\)

Có BD=DC (cmt)

BM=MC(\(\Delta ABM=\Delta ACM\))

\(\Rightarrow\Delta BMD=\Delta CMD\left(ch-cgv\right)\)

=>\(\widehat{BMD}=\widehat{CMD}\)

11 tháng 8 2018

a) Theo đề bài ta có: AB = AC

Theo quan hệ giữa đường xiên và hình chiếu ta có: AB = AC suy ra BD = CD (Do nếu hai đường xiên bằng nhau thì hai hình chiếu tương ứng bằng nhau và người lại nếu hai hình chiếu bằng nhau thì hai đường xiên tương ứng bằng nhau. Ở đây dường xiên là AB và AB , Hình chiếu là CD và BD)   (1)

b) Ta có: \(\Delta ABM\)và \(\Delta ACM\) có cạnh chung là AM

Theo quan hệ giữa hình chiếu và đường xiên ,từ (1) ta có: BD = CD suy ra MC = MB

Do vậy \(\Delta ABM=\Delta ACM\)(c.c.c)   (2)

c) Do đoạn thẳng MD nằm trên đoạn AD,mà AD lại là đường phân giác của \(\widehat{BAC}\)(cũng là đường phân giác của  \(\widehat{BMC}\) .) Và vì MB nằm trên đoạn AD (theo hình vẽ) nên MB là tia phân giác của: \(\widehat{BMC}\)

 Mà tia phân giác MB chia góc \(\widehat{BMC}\)thành hai góc bằng nhau đó là : \(\widehat{BMD}\)và \(\widehat{CMD}\)hay \(\widehat{BMD}=\widehat{CMD}\) (3)

Từ (1), (2) và (3) ta có đpcm

26 tháng 2 2021

a) Xét tg ABM và ACM có :

AB=AC(gt)

AM-cạnh chung

MB=MB(gt)

=> Tg ABM=ACM(c.c.c)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

=> AM là tia pg góc A (đccm)

b) Xét tg BNC và DNC có :

BC=CD(gt)

\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)

NC-cạnh chung

=> Tg BNC=DNC(c.g.c)

\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)

\(\Rightarrow CN\perp BD\left(đccm\right)\)

c) Có : AB=AC(gt)

=> Tg ABC cân tịa A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)

- Do tg BNC=DNC(cmt)

\(\widehat{ABC}=\widehat{BDC}\)(2)

- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)

- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)

        \(\widehat{ACB}+\widehat{BCE}=180^o\)

Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)

d) Xét tg ACD và EBC có :

BC=CD(gt)

DA=CE(gt)

\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)

=> Tg ACD=EBC(c.g.c)

=> AC=BE

Mà AC=AB(gt)

=> BE=AB (đccm)

#H

19 tháng 1 2018

Em tham khảo tại đây nhé.

Câu hỏi của Cả cuộc đời này tôi sẽ mãi yêu một người - Toán lớp 7 - Học toán với OnlineMath

30 tháng 12 2017

a) Xét \(\Delta AMBva\Delta AMC\) có 

\(\hept{\begin{cases}AB=AC\left(gt\right)\\chungAM\\\widehat{BAM}=\widehat{MAC}\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(ĐPCM\right)}\)

b) từ 2 tam giác trên = nhau =>BM=CM

xét tam giác BAM và tam giác CEM có 

\(\hept{\begin{cases}BM=CM\left(cmt\right)\\AM=ME\left(gt\right)\\\widehat{BMA}=\widehat{EMC}\left(đoi-đinh\right)\end{cases}}\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\Rightarrow\widehat{BAM}=\widehat{MEC}\left(ĐPCM\right)\)

c) từ hai góc trên = nhau, mà 2 góc đó ở vị trí so le trong =>AB//CE => AK vuông góc với CE => tam giác ACK vuông tại K 

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau