K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

 

a/ Xét tam giác BCD và tam giác BCE có

-góc B = góc C

-BD = EC

-BC: cạnh chung

=> tam giác BCD = tam giác BCE (cạnh góc cạnh)

=> BE=CD (2 cạnh tương ứng)

b/ Xét tam giác KBD và tam giác KCE có

-Góc BKD = góc CKE (đối đỉnh)

-BD=CE

-KB=KC

=> tam giác KBD = tam giác KCE

5 tháng 11 2016

ở câu a tại sao góc b= góc c vậy bn

20 tháng 1 2019

bạn có thể xem ở bạn LÊ YẾN NHI

mình đã trả lời cho bạn đó

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

17 tháng 3 2020

                                                        Bài giải

A B C D E K

a, Xét \(\Delta AEB\)\(\Delta ADC\) , có :

\(AD=AE\) ( giả thiết )

\(\widehat{A}\) : góc chung

\(AB=AC\) ( giả thiết )

\(\Rightarrow\text{ }\Delta AEB=\Delta ADC\) \(\left(c\text{ - }g\text{ - }c\right)\)

\(\Rightarrow\text{ }BE=CD\text{ ( cạnh tương ứng )}\)

b, AB = AC , AD = AE                   => AB - AD = AC - AE   hay   DB = EC

Xét \(\Delta BCD\)\(\Delta CBE\)có:

BC : cạnh chung

CD = BE ( chứng minh trên )

BD = CE ( chứng minh trên )

\(\Rightarrow\text{ }\Delta BCD=\Delta CBE\text{ }\left(c\text{ - }c\text{ - }c\right)\)

\(\Rightarrow\text{ }\widehat{ BDC}=\widehat{\text{ CEB}}\)( hai góc tương ứng )

Xét \(\Delta KBD\)\(\Delta KCE\)có:

\(\widehat{BDC}=\widehat{CEB}\)( chứng minh trên )

BD = CE ( chứng minh trên )

\(\widehat{ABK}=\widehat{ACK}\) ( 2 góc tương ứng do \(\Delta ABE=\Delta ACD\) )

\(\Rightarrow\text{ }\Delta KBD=\Delta KCE\left(g\text{ - }c\text{ - }g\right)\)

28 tháng 8 2017

a) Xét ∆BEA và ∆CDA, ta có:

BA = CA (gt)

\(\widehat{A}\)chung

AE = AD (gt)

Suy ra: ∆BEA = ∆CDA (c.g.c)

Vậy BE = CD (hai cạnh tương ứng)

b) ∆BEA = ∆CDA (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)

\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)

\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)

Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)

AB = AC (gt)

AE + EC = AD + DB mà AE = AD (gt) => EC = DB

Xét ∆ODB và ∆OCE, ta có:

\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)

DB = EC (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)

Suy ra: ∆ODB = ∆OEC (g.c.g)

23 tháng 12 2021

Chuẩn quá chời!

 

2 tháng 2 2019

tự vẽ hình

a) Xét tam giác ABE và tam giác ACD, ta có:

Góc BAE= góc DAC(hay góc A là góc chung)

AD=AC(gt)

AD=AE(gt)

Vậy tam giác ABE = tam giác ACD (c-g-c)

=> BE=CD ( cặp cạnh t/ứng)

=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK

 b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)

tam giác DBK có: góc D+góc B+góc K=180 độ

tam giác KCE có: góc K+góc C+góc E=180 độ

mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")

=> góc D=góc E

Xét tam giác BKD và tam giác KCE, ta có:

Góc BDK=góc KEC(cmt)

Góc DBK=góc ECK(cmt)

DB=CE(cmt)

Vậy tam giác BKD = tam giác KCE(g-c-g)

=> DK=EK(cặp cạnh tướng ứng)

c) Xét tam giác ADK và tam giác AEK, ta có:

AD=AE(gt)

DK=KE(cmt)

AK là cạnh chung

Vậy tam giác ADK= tam giác AEK(c-c-c)

=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK

=> AK là p/g của góc BAC

d) Góc BAK=góc CAK hay góc BAI=góc CAI

Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(gt)

AI là cạnh chung

Góc BAI=góc CAI (cmt)

Vậy tam giác BAI = tam giác CAI(c-g-c)

=>Góc AIB=góc AIC(cặp góc t/ứng)

mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ

=> AI vuông góc với BC

26 tháng 12 2017

a, Xét ΔABE=ΔACD

có: AB=AC

^A là góc chung

AD=AE

==> ΔABE=ΔACD(c-g-c)

b, Xét ΔKBD và ΔKCE

^K1=^K2 (đđ)

BD=CE( AB=AC và AD=AE)

KD=KE

==> ΔKBD=ΔKCE (c-g-c)

c, Xét ΔAKB và ΔAKC

có AK cạnh chung

KB=KC

AB=AC

=>ΔAKB = ΔAKC (c-c-c)

=> ^BAK= ^CAK mà AK là cạnh chung

=> AK là tia phân giác của góc BAC

29 tháng 11 2019

A E D B C

\(a)\)Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{A}:\) chung

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)(2 cạnh tương ứng)

\(b)AB=DA+DB\)

\(AC=EA+EC\)

Mà \(AB=AC;AD=AE\)

\(\Rightarrow DB=EC\)

Xét \(\Delta BOD\) và \(\Delta COE\) có:

\(\widehat{BOD}=\widehat{COE}\left(đ^2\right)\)

\(DB=EC\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(\Delta ABE=\Delta ACD\right)\)

\(\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)

26 tháng 11 2016

Ta có hình vẽ:

A B C K D E

Xét Δ ABE và Δ ACD có:

AB = AC (gt)

A là góc chung

AE = AD (gt)

Do đó, Δ ABE = Δ ACD (c.g.c)

=> ABE = ACD (2 góc tương ứng)

và AEB = ADC (2 góc tương ứng)

Mà AEB + BEC = 180o (kề bù)

ADC + CDB = 180o (kề bù)

nên BEC = CDB

Có: AB = AC (gt)

AD = AE (gt)

=> AB - AD = AC - AE

=> BD = CE

Xét Δ KBD và Δ KCE có:

KBD = KCE (cmt)

BD = CE (cmt)

KDB = KEC (cmt)

Do đó, Δ KBD = Δ KCE (đpcm)

26 tháng 11 2016

Ta có hình vẽ:

A B C D E K Xét tam giác ABE và tam giác ACD có:

A: góc chung

AB = AC (GT)

AD = AE (GT)

=> tam giác ABE = tam giác ACD (c.g.c)

=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)

=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)

\(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)

\(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)

Ta có: AB = AC; AD = AE => DB=EC (3)

Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)

25 tháng 2 2022

tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=561093&q=Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%20.%20%C4%90i%E1%BB%83m%20D%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AB%20%2C%20%C4%91i%E1%BB%83m%20E%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AC%20sao%20cho%20AD%20%3D%20AE%20.%20G%E1%BB%8Di%20K%20l%C3%A0%20giao%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BE%20v%C3%A0%20CD%20.%20Ch%E1%BB%A9ng%20minh%20r%E1%BA%B7ng%20%20%20a%29%20BE%20%3D%20CD%20%20b%29%20Tam%20gi%C3%A1c%20KBD%20b%E1%BA%B1ng%20tam%20gi%C3%A1c%20KCE%20%20c%29%20AK%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20c%E1%BB%A7a%20g%C3%B3c%20A%20%20d%29%20Tam%20gi%C3%A1c%20KBC%20c%C3%A2n

25 tháng 2 2022

làm hộ mik cái