Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a) Xét tam giác AHI và AKI có :
AI là cạnh chung
góc HAI =góc KAI
góc H = góc K (=90)
suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )
suy ra góc AIH =AIK (hai góc tg ứng)
suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )
xét tam giác HIB và KIC có
HIB = KIC (chứng minh trên )
BHI=CKI (=90)
BI=IC
suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )
suy ra BH=CK ( hai cạnh tương ứng ) (điều phải chứng minh )
b) Xét tam giác AHI và AKI có :
AI là cạnh chung
góc HAI =góc KAI
góc H = góc K (=90)
suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )
suy ra góc AIH =AIK (hai góc tg ứng)
suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )
xét tam giác HIB và KIC có
HIB = KIC (chứng minh trên )
BHI=CKI (=90)
BI=IC
suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )
suy ra BH=CK ( hai cạnh tương ứng ) (đpcm)
~Học tốt!~
a, Xét tg AHI và tg AKI ta có:
góc H = góc K = 90
AI là cạnh chung
góc HAI = góc KAI ( AI là tia phân giác góc BAC)
=> tg AHI =tg AKI ( cạnh huyền-góc nhọn)
=> AH=AK
A B C H M K I
Gọi M là trung điểm của BC
Xét hai tam giác vuông BMI và CMI có:
BM = CM (vì M là trung điểm của BC)
MI: cạnh chung
Vậy: \(\Delta BMI=\Delta CMI\left(hcgv\right)\)
Suy ra: IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông AHI và AKI có:
AI: cạnh huyền chung
\(\widehat{HAI}=\widehat{KAI}\left(gt\right)\)
Vậy: \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC có:
IB = IC (cmt)
IH = IK (cmt)
Vậy: \(\Delta IHB=\Delta IKC\left(ch-cgv\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).
Xét ∆BMI và ∆CMI, ta có:
+) BM = CM (vì IM là đường trung trực của BC)
+) \(\widehat{BMI}=\widehat{CMI}=90^0\)
+) MI cạnh chung
Suy ra: ∆BMI = ∆CMI (c.g.c)
⇒ IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông IHA và IKA, có:
+) \(\widehat{HAI}=\widehat{KAI}\) (AI là phân giác góc A)
+) AI cạnh huyền chung
Suy ra: ∆IHA = ∆IKA (cạnh huyền - góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC, có:
+) IB = IC (chứng minh trên)
+) IH = IK (chứng minh trên)
Suy ra: ∆IHB = ∆IKC (cạnh huyền - cạnh góc vuông)
Suy ra: BH = CK (2 cạnh tương ứng)
A B M K C I H
a) Xét \(\Delta AHI\)và \(\Delta AKI\)có :
AI cạnh chung
\(\widehat{IHA}=\widehat{IKA}\)(AI là tia phân giác của A)
=> \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
=> AH = AK(2 cạnh tương ứng)
b) Gọi M là trung điểm của BC
Xét \(\Delta BMI\)và \(\Delta CMI\)có :
BM = CM(gt)
\(\widehat{BMI}=\widehat{CMI}=90^0\)
MI cạnh chung
=> \(\Delta BMI=\Delta CMI\left(c-g-c\right)\)
=> IB = IC(2 cạnh tương ứng)
\(\Delta AHI=\Delta AKI\left(cmt\right)\)=> IH = IK(hai cạnh tương ứng)
Xét \(\Delta IHB\)và \(\Delta IKC\)có :
+) IH = IK(chứng minh trên)
+) IB = IC(chứng minh trên)
=> IH + IB = IK + KC
=> BH = CK(hai cạnh tương ứng)
c) Ta có : AC = AK + KC (1)
AB = AH - BH (2)
Từ (1) và (2) suy ra : AC + AB = (AK + AH) + (KC - BH)
Do AH = AK,BH = CK => AC + AB = 2AK , suy ra :
AK = \(\frac{AC+AB}{2}\)
Tương tự ta được \(CK=\frac{AC-AB}{2}\)