Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(hình bạn tự vẽ)
Từ B kẻ đường thẳng vuông góc vs FE cắt FE tại N, từ E kẻ đường thẳng vuông góc vs BC cắt BC tại K.
TA XÉT T/G ADB VÀ T/G ADE CÓ: AE=AB (GT)
GÓC BAD= GÓC DAE (VÌ AD P/G GOSB BAC)
AD CHUNG
=> T/G ADB = T/G ADE (C-G-C)
=> GÓC ABD=GÓC AEC (2 GÓC TƯƠNG ỨNG) (1)
=> DB=DE (2 CẠNH TƯƠNG ỨNG)
XÉT T/G BND VÀ T/G EKD CÓ: GÓC BND=GÓC DKE (CÙNG = 90 ĐỘ)
BD=DE (CMT)
GÓC BDN=GÓC EDK (ĐỐI ĐỈNH)
=>GÓC NBD=GÓC DEK (2 GÓC TƯƠNG ỨNG) (2)
=> NB=EK (2 CẠNH TƯƠNG ỨNG)
TỪ (1) VÀ (2) => GÓC ABD+ GÓC DBN = GÓC AEC + GÓC DEK
=> GÓC ABN= GÓC AEK
MÀ GÓC FBN KỀ BÙ GÓC ABN
GÓC KEC KỀ BÙ GÓC AEK
=>GÓC FBN= GÓC KEC
XÉT T/G FBN VÀ T/G CEK CÓ: GÓC FBN= GÓC KEC (CMT)
BN=EK (CMT)
GÓC BNF= GÓC EKC (CÙNG = 90 ĐỘ)
=> T/G FBN=T/G CEK (G-C-G)
=> BF=CE (2 CẠNH TƯỜNG ỨNG)
MÀ AB=AE (GT)
=> BF+ AB= CE+ AE
=> AF=AC
=> T/G AFC CÂN TẠI A
MÀ T/G AEB CÂN TẠI A ( GT)
=> BE// CF (T/C)
=> ĐPCM
A B C H M F E I K
, M là trung điểm của BC ⇒ MB = MC
Xét ΔMBA và ΔMCE có:
MB = MC
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
MA = ME
=> ΔMBA = ΔMCE (c.g.c) (đpcm)
b, Xét 2 tam giác vuông ΔBHA và ΔBHF có:
BH chung; \(\widehat{ABH}=\widehat{FBH}\) (do góc ABx nhận BC là tia phân giác)
=> ΔBHA = ΔBHF (cạnh góc vuông - góc nhọn)
=> AB = BF mà AB = CE (do ΔMBA = ΔMCE)
=> CE = BF (đpcm)
c, Ta thấy: \(\widehat{FBC}=\widehat{ABC}=\widehat{ECB}\)
=> ΔKBC cân tại K mà KM là trung tuyến
=> KM là phân giác của \(\widehat{BKC}\) (1)
ΔKBC cân tại K ⇒ KB = KC mà BF = CE
⇒ KB - BF = KC - CE ⇒ KF = KE
Ta chứng minh được ΔBEK = ΔCFK (c.g.c)
=> \(\widehat{EBK}=\widehat{FCK}\)
=.> ΔBIF = ΔCIE (g.c.g)
=> IF = IE ⇒ ΔIFK = ΔIEK (c.c.c)
\(\Rightarrow\widehat{IKF}=\widehat{IKF}\)
⇒ KI là phân giác của ^BKC (2)
Từ (1) và (2) suy ra M, I, K thẳng hàng (đpcm)
Có hình ko bạn
Nhìn như này loạn quá
Với lại cái đề nó cũng dài quá nữa cơ
Nhìn muốn xỉu luôn ý.
a: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
hay DK\(\perp\)BC
b: Xét ΔBEC có BE=BC
nên ΔBEC cân tại B
mà BI là đường phân giác
nên BI là đường cao
Trl:
a) Vì I thuộc đường trung trực của BC và AD(gt))
=> IB=IC và IA=ID (theo định lí đường trung trực).
Xét 2 ΔAIB và DIC có:
AI=DI(cmt)
AB=DC(gt)
IB=IC(cmt)
=> ΔAIB=ΔDIC(c−c−c).
b) Theo câu a) ta có ΔAIB=ΔDIC
=> BAIˆ=CDIˆ (2 góc tương ứng).
Xét ΔADIcó:
IA=ID(cmt)
=> ΔADI cân tại I.
=> ADIˆ=DAIˆ(tính chất tam giác cân).
Hay CDIˆ=CAIˆ.
Mà BAIˆ=CDIˆ(cmt)
=> BAIˆ=CAIˆ
=> AI là tia phân giác của BACˆ.
~Học tốt!~