Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có hình vẽ:
A B C D M
a/ Xét tam giác AMB và tam giác CMD có:
BM = MC (GT)
góc AMB = góc CMD (đối đỉnh)
AM = MD (GT)
=> tam giác AMB = tam giác CMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
b/ Ta có: tam giác AMB = tam giác CMD (câu a)
=> góc BAM = góc MDC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // DC (đpcm)
c/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
BM = MC (GT)
AM: chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc AMB = góc AMC (2 góc tương ứng) (*)
Mà góc AMB = góc CMD (đối đỉnh) (**)
Từ (*),(**) = >góc AMC = góc CMD (1)
Ta có: AM = MD (GT) (2)
CM: cạnh chung (3)
Từ (1),(2),(3) => tam giác AMC = tam giác DMC
=> góc ACM = góc DCM (2 góc tương ứng)
=> CM là phân giác góc ACD
hay CB là phân giác góc ACD
A B C D M 1 2
a) Xét ΔABM và ΔDCM có:
AM=DM(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
BM=CM(gt)
=> ΔABM=ΔDCM(c.g.c)
=> AB=DC
b) VÌ: ΔABM=ΔDCM(cmt)
=> \(\widehat{ABM}=\widehat{C_2}\) .Mà hai góc này ở vị trí sole trong
=> AB//DC
c)Vì: ΔABC có AB=AC(gt)
=> ΔABC cân tại A
=> \(\widehat{ABM}=\widehat{C_1}\)
Mà: \(\widehat{ABM}=\widehat{C_2}\left(cmt\right)\)
=> \(\widehat{C_1}=\widehat{C_2}\)
=> CB là tia phân giác của góc ACD

a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
XétΔCAD có
CM là đường cao
CM là đường trung tuyến
Do đó: ΔCAD cân tại C
Ta có: ΔCAD cân tại C
mà CM là đường cao
nên CM là phân giác của góc ACD
=>CB là phân giác của góc ACD

xin lỗi mình chỉ biết làm phần b thôi
b)Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)
Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC
vậy....
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
a)Xét tam giác AMB và tam giác DMC có:
BM=CM(M là trung điểm của BC)
góc AMB=góc DMC(2 góc đối đỉnh)
AM=DM(GT)
=>tam giác ABM= tam giác DMC(c.g.c)
=>AB=DC(2 cạnh tương ứng)
b)Vì tam giác AMB= tam giác DMC(cmt)
=>góc ABM = góc DCM
mà 2 góc này ở vị trí so le trong
=>AB//DC
c)Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
AM là cạnh chung
BM=CM(M là trung điểm của cạnh BC)
=>tam giác ABM=tam giác ACM(c.c.c)
=>góc ACM=góc ABM(2 góc tương ứng)
mà góc ABM=gócDCM(cmt)
=>góc ACM= góc DCM
=>CB là tia phân giác của góc ACD

a) xét tg ABM & tg DCM có
MB=MC (vì M là trung điểm BC)
AMB^ =DMC^(2 GÓC ĐỐI ĐỈNH)
MA =MD (GT)
=) tg ABM=tg DCM(c.g.c)
vậy.......
b) Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)
Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC
vậy.....
c)Xét tg ABM& ACM có
AB =AC (gt)
AM là cạnh chung
BM =CM( vì M là trung điểm BC)
=) tg ACM =ABM(C.c.c)
=) AMB^ =AMC^ ( 2 góc tương ứng)
Mà AMB^ +AMC=180 (2 góc kề bù )
nên AMB^ =AMC=90
=) AM vuông góc vs BC
mk đã làm chi tiết lắm đó Vân Khánh
good luck

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )
a)
+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :
AM = DM (gt)
góc AMB = góc DMC ( đối đỉnh )
BM = CM (gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )
=> AB = DC ( hai canh tương ứng )
+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)
=> góc ABM = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí sole trong
=> AB // DC
b) Ta có : AB // CD (cmt)
AB \(\perp\) AC (gt)
=> DC \(\perp\)AC
Xét \(\Delta\)ABC và \(\Delta\)CDA có :
AB = CD (cmt)
góc BAC = góc DCA ( = 90 độ )
AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )
=> BC = DA ( hai cạnh tương ứng )
Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)
c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :
AB chung
góc BAE = góc BAC ( = 90 độ )
AE = AC (gt)
=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )
=> BE = BC và góc BEA = góc BCA ( hai góc tương ứng ) (1)
Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)
=> \(\Delta\)AMC cân tại M
=> góc MAC = góc MCA
hay góc MAC = góc BCA (2)
Từ (1) và (2) => góc MAC = góc BEC
Mà hai góc này ở vị trí đồng vị
=> AM // BE (đpcm)
d) Câu này mình không hiểu đề lắm !!
Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.
e) Ta có : BE // AM
=> BE // AD
=> góc EBO = góc DAO
Xét \(\Delta\)EBO và \(\Delta\)DAO có :
BE = AD ( = BC )
góc EBO = góc DAO (cmt)
OB = OA (gt)
=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )
=> góc EOB = góc DOA ( hai góc tương ứng )
Mà : góc EOB + góc EOA = 180 độ
=> góc DOA + góc EOA = 180 độ
hay : góc EOD = 180 độ
=> Ba điểm E, O, D thẳng hàng (đpcm)
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

A C M B D
a) không cần chứng minh cũng biết là AB=DC , bạn ghi sai đề rùi, đáng lẽ ra là CM tam giác ABM= tam giác CDM
NHƯNG MÌNH ĐÃ CHỨNG MINH Ở DƯỚI LUÔN ZỒI, BN XEM NHA !
b) Vì M là trung điểm của BC
=> BM=CM
Xét tam giác ABM và tam giác CDM có :
BM=CM
\(\widehat{AMB}=\widehat{CMD}\)(2 góc đối đỉnh)
AM=MD
=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
=>\(\widehat{ABC}=\widehat{ADC}\)(2 góc tương ứng )
Mà \(\widehat{ABC}\) và \(\widehat{ADC}\)là 2 góc so le trong
\(\Rightarrow AB//DC\left(đpcm\right)\)
c)Xét \(\Delta AMB\)và \(\Delta ACM\)có:
AB = AC (giả thiết)
AM là cạnh chung
BM = CM
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\Delta AMC=\Delta CDM\left(=\Delta AMB\right)\)
\(\Rightarrow\widehat{ACM}=\widehat{MCD}\)(2 góc tương ứng)
Mà tia MC nằm giữa tia AC và tia CD
=> CB là tia phân giác của \(\widehat{ACD}\)\(\left(đpcm\right)\)
a.cm AB = DC
Xét tam giác AMB và tam giác DMC có:
AM = DM
góc AMB = góc DMC (đối đỉnh)
MB = MC
=> tam giác AMB = tam giác DMC (cgc)
=> AB = DC (đpcm)
b.cm AB // DC
Có: M là trung điểm của AD
M là trung điểm của BC
và AB = DC
=> tứ giác ABDC là hình bình hành
=> AB // DC
c.cm CB là tia phân giác của góc ACD
Có: AB = AC => tam giác ABC cân tại A
=> AM là đường trung tuyến cũng là đường cao
=> AM vuông với BC
Xét tam giác AMC và tam giác DMC có:
AM = DM
cạnh CM chung
góc AMC = góc DMC ( = 900)
=> tam giác AMC = tam giác DMC (cgc)
=> góc ACM = góc DCM
hay CB là tia phân giác của góc ACD