Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa câu b: Từ M kẻ ME
Bg
a/ Xét hai tam giác AMB và AMC có:
AB = AC (gt)
BM = MC (vì M là trung điểm của BC)
AM là cạnh chung
Nên \(\Delta AMB=\Delta AMC\)(c.c.c)
Vậy \(\Delta AMB=\Delta AMC\)
b/ Xét hai tam giác vuông AME và AMF có:
\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))
AM là cạnh chung
Nên \(\Delta AME=\Delta AMF\)(g.c.g)
Do đó AE = AF (hai cạnh tương ứng)
Vậy AE = AF
c và d hơi dài. Đợi một thời gian :((

a, xét \(\Delta\)BEM và \(\Delta\)CFM có:
\(\widehat{B}\)=\(\widehat{C}\)(gt)
BM=CM(trung tuyến AM)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)
b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)
Gọi O là giao của AM và EF
xét tam giác OAE và tam giác OAF có:
AO cạnh chung
\(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)
vì AB=AC mà EB=FC nên AE=AF
\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)
\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)
từ (1) và (2) suy ra AM là đg trung trực của EF
c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)
ta có tam giác BAM=tam giác CAM(c.g.c)
=> AD là p/g của góc BAC(2)
từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng
a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C
Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F
BM=CM (BM là trung tuyến)
Góc B=Góc C
=> Tam giác BEM=Tam giác CFM(ch-gn)
b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC
Mà AB=AC=> AE=AF(2)
Từ 1 và 2 => AM là trung trực của EF

Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
kham khảo nha
Cho:
a) Chứng minh \(\triangle A M B = \triangle A M C\)
Chứng minh:
⇒ Theo trường hợp cạnh - cạnh - cạnh (c.c.c):
\(\triangle A M B = \triangle A M C .\)
b) Từ \(M\) kẻ \(M E \bot A B\), \(M F \bot A C\). Chứng minh \(A E = A F\)
Chứng minh:
Nhưng như vậy chưa đủ, ta dùng hai tam giác vuông này:
Hoặc xét phép đối xứng trục qua đường phân giác góc \(A\), thì \(A B\) ánh xạ thành \(A C\) ⇒ \(E\) ánh xạ thành \(F\) ⇒
bạn dung chat gpt à, có từ mình không hiểu