K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

a) Xét tam giác $ABH$ và $ACK$ có:

\(AB=AC\) (gt)

\(\widehat{A}\) chung

\(AK=AH\) (gt)

\(\Rightarrow \triangle ABH=\triangle ACK(c.g.c)\Rightarrow BH=CK\)

b)

\(AB=AC; AK=AH\Rightarrow AB-AK=AC-AH\Rightarrow BK=CH\)

Từ tam giác bằng nhau phần a suy ra:

\(\widehat{ABH}=\widehat{ACK}\Leftrightarrow \widehat{KBO}=\widehat{HCO}\)

\(\widehat{AHB}=\widehat{AKC}\Rightarrow 180^0-\widehat{AHB}=180^0-\widehat{AKC}\)

\(\Rightarrow \widehat{CHO}=\widehat{BKO}\)

Xét tam giác $OKB$ và $OHC$ có:

\(KB=HC\) (cmt)

\(\widehat{OBK}=\widehat{OCH}\) (cmt)

\(\widehat{BKO}=\widehat{CHO}\) (cmt)

\(\Rightarrow \triangle OKB=\triangle OHC\) (g.c.g) (đpcm)

\(\Rightarrow OB=OC\)

c)

Xét tam giác $AOB$ và $AOC$ có:

\(\left\{\begin{matrix} OB=OC(cmt)\\ \text{OA chung}\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AOB=\triangle AOC(c.c.c)\)

\(\widehat{OAB}=\widehat{OAC}\Rightarrow OA\) là phân giác góc $\widehat{BAC}$

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Hình vẽ:
Tính chất ba đường cao của tam giác

16 tháng 12 2016

Gọi O là trung điểm hay giao đ của BH và CK

3 tháng 2 2017

là giao điểm phải ko bn @Trần Việt Linh

14 tháng 1 2019

a) Xét tam giác BKC và tam giác CHB

+ BC chung 

+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH

+ góc ABC = góc HCB  (tam giác ABC cân)

Vậy tam giác BKC = tam giác CHB (c.g.c)

Và góc BKC = góc CHB

\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)

\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)

\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)

Xét \(\Delta OKB\)và \(\Delta OHC\)

+ BK = HC

\(\widehat{KBO}=\widehat{OCH}\)

\(\widehat{OKB}=\widehat{OHC}\)

Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)

VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O

OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O 

c) Xét \(\Delta AKO\)và \(\Delta AHO\)

+ AO chung

+ OK = OH

+ AH = AK

\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)

=> Góc KAO = góc HAO

Gọi giao điểm của KH và AO là F

Xét tam giác AFK và tam giác AFH

+ AK = AH

+ ÀF chung

+góc KAF = góc HAF (cmt)

Vậy tam giác AFK = tam giác AFH (c.g.c)

Và KF = FH(hai cạnh tương ứng)

Hay AO đi qua trung điểm của HK

31 tháng 5 2017

Hình vẽ:

A B C K H O 1 2 1 2

Giải:

Xét \(\Delta ABH\)\(\Delta ACK\) có:

\(AH=AK\left(gt\right)\)

\(\widehat{A}\) là góc chung

\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )

Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )

\(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)

7 tháng 1 2018

+) Xét ΔABH và ΔACK, ta có:

AB = AC ( vì tam giác ABC cân tại A)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

AH = AK (giả thiết)

Suy ra: ΔABH = ΔACK(c.g.c)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

+ Do đó, tam giác OBC cân tại O.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

21 tháng 4 2020

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK