K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

a) ta có AH⊥BC  \(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}\)=90 độ

ta có AB=AC \(\Rightarrow\)\(\Delta\)ABC cân tại A

\(\Rightarrow\)\(\widehat{ABC}\)=\(\widehat{ACB}\) hay\(\widehat{ABH}=\widehat{ACH}\)

Xét \(\Delta\)AHB\(\left(\widehat{AHB}=90độ\right)\) và \(\Delta\)AHC \(\left(\widehat{AHC}=90\right)độ\) có 

AB=AC(giả thiết)

\(\widehat{ABH}=\widehat{ACH}\) (chứng minh trên)

\(\Rightarrow\) \(\Delta\)AHB= \(\Delta\)AHC(cạnh huyền - góc nhọn)

\(\Rightarrow\)HB=HC(2 góc tương ứng)

vậy HB=HC

b) \(\Delta\)AHB= \(\Delta\)AHC(chứng minh câu a)

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\) hay \(\widehat{HAD}=\widehat{HAE}\)

ta có HD⊥AB \(\Rightarrow\widehat{HDA}=90độ\)

HE⊥AC \(\Rightarrow\widehat{HEA}=90độ\)

Xét \(\Delta\)AHD (\(\widehat{HDA}=90độ\)) và \(\Delta\)AHE \(\left(\widehat{HEA}=90\right)độ\) có 

\(\widehat{HAD}=\widehat{HAE}\) (chứng minh trên )

AH là cạnh huyền chung

\(\Rightarrow\)\(\Delta\)AHD = \(\Delta\)AHE (cạnh huyền -góc nhọn)

\(\Rightarrow HD=HE\) ( 2 góc tương ứng)

vậy HD=HE

c) ta có HD⊥AB  \(\Rightarrow\widehat{HDB}=90độ\)

HE⊥AC \(\Rightarrow\widehat{HEC}=90độ\)

\(\Delta\)ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)  hay \(\widehat{DBH}=\widehat{ECH}\)

Xét \(\Delta\)HDB\(\left(\widehat{HDB}=90độ\right)\) và \(\Delta\)HEC \(\left(\widehat{HEC}=90độ\right)\)

BH=HC (chứng minh câu a)

\(\widehat{DBH}=\widehat{ECH}\) (chứng minh trên)

\(\Rightarrow\Delta HDB=\Delta HEC\) (cạnh huyền -góc nhọn)

\(\Rightarrow BD=EC\) (2 cạnh tương ứng )

vậy BD =EC

 

 

 

27 tháng 12 2020

ThX

 

14 tháng 1 2020

Trả lời : Bn tham khảo link này : 

https://h.vn/hoi-dap/question/559410.html 

( Vào thống kê hỏi đáp của mk sẽ thấy ) 

14 tháng 1 2020

Đây mới là lin kđúng : Câu hỏi của Đoàn Nhật Nam - Toán lớp 7 | Học trực tuyến 

Xl cậu ( vào thống kê của mk sẽ thấy 

23 tháng 1 2017

Bài này mk làm rồi, bn vào trang của mk là thấy nhé, cần thì link luôn thể; https://hoc24.vn/hoi-dap/question/172618.html

26 tháng 2 2018

A B C H D E

a) Xét \(\Delta ABC\) có :

AB = AC (gt)

=> \(\Delta ABC\) cân tại A

\(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)

\(AB=AC\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :

\(AH^2=AB^2-BH^2\) (Định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3\left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)

\(BH=CH\)(cm câu a)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> ​\(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)

=> \(HD=HC\) (2 cạnh tương ứng)

=> \(\Delta HDE\) cân tại H.

17 tháng 2 2020

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

=> \(\widehat{DAH}=\widehat{EAH}.\)

=> \(\Delta HDE\) cân tại \(H\left(đpcm\right).\)

Chúc bạn học tốt!

28 tháng 2 2020

a, ta có tam giác Abc có AH vuông góc với BC ,AB = 5cm ,AC = 5cm suy ra HB= HC , BAC=CAH b, có HB+HC=BC suy ra BC : 2 = 4 hay 8:4 =2 nên HB=HC=4cm Xét tam giác AHB vuông tại H có AB^2 = AH^2 + HB^2 suy ra AH^2 =AB^2 -HB^2 hay : AH^2 =5^2 -4^2 AH^2 = 25-16 AH^2 = 9 suy ra AH = 9 cm c,xét tam giacsHDE có HD vuông góc với AB HE vuông góc với AC suy ra HDE là tam giác cân CHÚC BẠN HỌC TỐT

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(do ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

b) Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔHDB=ΔHEC(cạnh huyền-góc nhọn)

⇒HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(định nghĩa tam giác cân)

c) Ta có: ΔHDB=ΔHEC(cmt)

⇒BD=EC(hai cạnh tương ứng)

Ta có: BD+AD=AB(do A,D,B thẳng hàng)

EC+AE=AC(do A,E,C thẳng hàng)

mà AB=AC(ΔABC cân tại A)

và BD=EC(cmt)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(định nghĩa tam giác cân)

\(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔADE cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

\(\widehat{ADE}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(dấu hiệu nhận biết hai đường thẳng song song)

18 tháng 2 2020

b) Theo câu a) ta có \(\Delta AHB=\Delta AHC.\)

c) Theo câu b) ta có \(\Delta ADH=\Delta AEH.\)

9 tháng 2 2019

mong các bạn giúp mình nhanh ạ

9 tháng 2 2019

A B C 5 5 8 H D E

Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A 

                            <=> góc B = góc C

Xét t/giác ABH và t/giác ACH

có góc BHA = góc CHA = 900 (gt)

  AB = AC = 5 cm (gt)

góc B = góc C (cmt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> BH = CH (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)

Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)

=> AB2 = AH2 + BH2

=> AH2 = 52 - 4 = 9 = 32

=> AH = 3 (cm)

c) Xét t/giác ADH và t/giác AEH

có góc ADH = góc AEH = 900(gt)

   AH : chung

góc DAH = góc EAH (cmt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> HD = HE (hai cạnh tương ứng)

=> t/giác HDE là t/giác cân tại H 

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

5 tháng 3 2020

MỌI NGÙI ƠI GUISP MIK VS , CẦN GẤP 

a: Ta co: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

b: BH=CH=7/2=3,5cm

\(AH=\sqrt{4^2-3.5^2}=\dfrac{\sqrt{15}}{2}\left(cm\right)\)

c: Xét ΔADH vuông tại D va ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau