Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Mk vẽ hình xấu , chậc ! bn tự vẽ nhé ... ^.^ )
Xét \(\Delta ABM\)và \(\Delta ACM\)có :
AB=AC ( gt )
BM=CM ( M là trung điểm của BC )
AM : cạnh chung
do đó \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Có \(\Delta ABM=\Delta ACM\)( c/m câu a )
\(\Rightarrow\widehat{AMC}=\widehat{AMB}\) ( 2 góc tương ứng )
hay AM là tia phân giác của góc \(\widehat{BAC}\)
\(\Rightarrow\widehat{AMB}+\widehat{AMC}\) = 180 độ ( 2 góc kề bù )
mà góc AMB = góc AMC = \(\frac{180}{2}\)
\(\Rightarrow\)góc AMC = góc AMC = 90 độ
suy ra AM vuông góc với BC
A B C M D
*Xét ΔABM và ΔACM có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)
⇒ ΔABM = ΔACM (c - c - c)
*Vì ΔABM = ΔACM (cmt)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CDA B C N M
a) Chứng minh AM vuông góc với BC
\(\Delta ABC\) có AB = AC \(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow\) AM là đường trung tuyến đồng thời là đường cao
Hay AM \(\perp\) BC.
b) Chứng minh: AC // BN
Xét hai tam giác vuông AMC và NMB có:
MA = MN (gt)
MB = MC (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(hcgv\right)\)
\(\Rightarrow\) \(\widehat{MAC}=\widehat{MNB}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AC // BN (đpcm).
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
c: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)
hay CI\(\perp\)CA
CMR tam giác ABM = ACM
Vì \(AB=AC\Rightarrow\Delta ABC\) cân tại \(A\) \(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM-\Delta ACM\) có :
\(AB=AC\left(gt\right)\)
\(BM=CM\) ( do AM là tia phân giác )
\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Vì \(\Delta ABM=\Delta ACM\Rightarrow BM=CM\) ( cạnh tương ứng )
\(\Rightarrow M\) là trung điểm của BC
\(\widehat{ABM}+\widehat{ACM}=180^0_{ }\)
\(\widehat{ABM}=\widehat{ACM}=\dfrac{180}{2}=90^0_{ }\)
\(\Rightarrow AM\perp BC\)
A B C M
Giải:
Xét \(\Delta AMB,\Delta AMC\) có:
\(AB=AC\left(gt\right)\)
AM: cạnh chung
\(BM=MC\left(=\frac{1}{2}BC\right)\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c-c-c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( góc t/ứng )
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\left(đpcm\right)\)
Vậy...
xét \(\Delta AMBvà\Delta AMCcó\)
AM là cạnh chung
AB=AC(gt)
MB=MC(M là trung điểm của BC)
=> \(\Delta AMB=\Delta AMC\)(ccc)
=>góc AMB= góc AMC ( 2 góc tương ứng) mà 2 góc này là 2 góc kề bù => góc AMB= góc AMC= 180o : 2 = 90o
=>\(AM\perp BC\)
A B C M