Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(AB=AC\left(g.t\right)\)
\(\Rightarrow\Delta ABC\) cân tại \(A\).
\(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\left(g.t\right)\)
\(\widehat{B}=\widehat{C}\) (c/m trên)
\(MB=MC\left(g.t\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(đpcm\right)\)
b) Ta có: \(\Delta ABM=\Delta ACM\left(c/ma\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC=180^o}\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
c) Xét \(\Delta ADM\) và \(\Delta AEM\) có:
\(AD=AE\left(g.t\right)\)
\(\widehat{BAM}=\widehat{CAM}\left(\Delta ABM=\Delta ACM\right)\)
\(AM\) : \(cạnh\) \(chung\)
\(\Rightarrow\Delta ADM=\Delta AEM\left(đpcm\right)\)
a. Xét tam giac ABM và tam giac ACM có
AB=AC(gt)
góc B=góc C(tam giac ABC cân)
AM cạnh chung
suy ra tam giac ABM=tam giac ACM
b. ta có:
tam giác ABC cân mà AM là đường trung tuyến nên AM cũng là đường cao
suy ra AM vuông goc vs BC
1: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do do: ΔABM=ΔACM
2: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AMlà đường cao
3: Xét ΔADM va ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
Do đó: ΔADM=ΔAEM
Hình bạn tự vẽ nha!
b) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\) (vì M là trung điểm của \(BC\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng).
Ta có: \(\widehat{AMB}+\widehat{AMC}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{AMB}=\widehat{AMC}\left(cmt\right)\)
=> \(2.\widehat{AMB}=180^0\)
=> \(\widehat{AMB}=180^0:2\)
=> \(\widehat{AMB}=90^0.\)
=> \(\widehat{AMB}=\widehat{AMC}=90^0\)
=> \(AM\perp BC.\)
c) Xét 2 \(\Delta\) vuông \(ADM\) và \(AEM\) có:
\(\widehat{AMD}=\widehat{AME}=90^0\) (vì \(AM\perp BC\))
\(AD=AE\left(gt\right)\)
Cạnh AM chung
=> \(\Delta ADM=\Delta AEM\) (cạnh huyền - góc nhọn).
Chúc bạn học tốt!